74 / 100

Dr. Sijia Zheng | Materials Science | Best Researcher Award

Associate Professor at Zhejiang Sci-Tech University, China

Dr. Sijia Zheng is an Associate Professor in the Department of Textile Science and Technology at Zhejiang Sci-Tech University, located in Hangzhou, China. She is affiliated with the Key Laboratory of Advanced Textile Materials and Manufacturing Technology, as well as the Engineering Research Center for Eco-Dyeing & Finishing of Textiles and Zhejiang Provincial Engineering Research Center for Green and Low-Carbon Dyeing & Finishing. Dr. Zheng is known for her expertise in silicone chemistry and materials science, particularly for her research on sustainable, high-performance materials such as self-healing and recyclable silicones. Her interdisciplinary work integrates fields like biomedical applications, textile materials, and green chemistry. With numerous publications in leading scientific journals and patents to her name, Dr. Zheng is a prominent figure in her field. Her ongoing research aims to address global challenges such as sustainability and innovation in biomedical and industrial applications. Through her work, she is actively contributing to the development of materials that are both functional and eco-friendly.

Professional Profile

Education

Dr. Sijia Zheng’s academic journey is marked by rigorous training and significant achievements. She earned her Bachelor’s degree with Honours from Zhejiang University of Technology in 2012. Building on her undergraduate studies, she pursued a Master’s degree in Textile Engineering from Zhejiang University in 2015. Following this, she continued her academic progression by undertaking doctoral studies at McMaster University in Canada, where she completed her Ph.D. in 2020. At McMaster, she worked under the mentorship of Michael A. Brook, further refining her research skills in the areas of silicone chemistry and materials science. Her educational background reflects her strong foundation in both theoretical and practical aspects of materials science, which has paved the way for her successful academic and research career.

Professional Experience

Dr. Zheng’s professional experience spans both academic and industry settings, contributing significantly to the field of materials science. She currently holds the position of Associate Professor at Zhejiang Sci-Tech University, where she teaches and supervises graduate students in the Department of Textile Science and Technology. Alongside her teaching role, Dr. Zheng leads research projects in the university’s research labs, where she focuses on the development of innovative materials, including self-healing silicones and antibacterial coatings. Prior to her current role, Dr. Zheng has collaborated on multiple industry-driven projects, providing consultancy for the development of materials used in consumer goods and medical devices. One of her notable industry projects includes reinforcing melamine dinnerware with bamboo fibers. Her career trajectory shows a seamless blend of academic rigor with practical application, allowing her to bridge the gap between fundamental research and real-world implementation.

Research Interests

Dr. Zheng’s research interests lie at the intersection of material chemistry, sustainability, and biomedical applications. Her primary research focus is on the development of novel silicone-based materials, particularly self-healing, recyclable, and thermally conductive silicones. She has a strong emphasis on green chemistry and sustainable practices in material development, aiming to create eco-friendly alternatives to traditional materials used in various industries. A major aspect of her work involves enhancing the performance of silicone composites, with applications in medical devices, particularly in creating antibacterial surfaces for silicone-based medical products. Dr. Zheng is also exploring ways to incorporate natural products into silicone matrices to improve sustainability without sacrificing material performance. Through her interdisciplinary approach, she has made significant contributions to both the academic and industrial sectors, positioning her as a leader in the field of sustainable material innovation.

Awards and Honors

Dr. Zheng’s exceptional research accomplishments have been recognized by various awards and honors. She has published over 20 research papers in prominent journals, including Small and ACS Applied Materials & Interfaces, where her work on silicone-based materials has garnered significant attention from both the scientific community and industry. Her research has contributed to advancing the understanding of materials science, particularly in areas such as self-healing, recyclability, and sustainability in material design. Dr. Zheng has also been awarded patents for her innovations, demonstrating her commitment to not only advancing theoretical knowledge but also creating practical solutions for real-world challenges. Her strong academic standing is further evidenced by her h-index of 10, which reflects the growing influence of her work. While her research portfolio continues to expand, her recognition in the field continues to solidify, making her a highly respected figure in both academic and industrial circles.

Conclusion

Dr. Sijia Zheng is a strong candidate for the Best Researcher Award due to her significant contributions to advanced materials and sustainable chemistry. Her focus on high-performance and eco-friendly silicones addresses pressing scientific and industrial challenges. While she excels in impactful research and innovation, enhancing her global outreach and increasing the practical implementation of her patents could further elevate her candidacy. Overall, her expertise and accomplishments make her highly deserving of this recognition.

Publications top noted

  • Title: Leaching-Free Durable Antibacterial Composite Films Constructed via Delicate Balance Between Potent Contact Sterilization and Low Adhesion
    Authors: Wu, X., Yao, J., Guo, Y., Mi, Y., Cao, Z.
    Year: 2024
    Citations: 1
  • Title: Mucus Mimic Hydrogel Coating for Lubricous, Antibiofouling, and Anti-Inflammatory Urinary Catheters
    Authors: Zheng, S., Liu, Y., Yao, J., Yu, X., Cao, Z.
    Year: 2024
    Citations: 0
  • Title: Alveoli-Mimetic Synergistic Liquid and Solid Thermal Conductive Interface as a Novel Strategy for Designing High-Performance Thermal Interface Materials
    Authors: Zheng, S., Xue, H., Liu, Y., Yu, X., Cao, Z.
    Year: 2024
    Citations: 1
  • Title: Thermoplastic, Redox Recyclable Silicone-Lipoamide Elastomers
    Authors: Noman, M.E., Zheng, S., Xue, H., Brook, M.A.
    Year: 2023
    Citations: 1
  • Title: Durable Antibacterial Cotton Fabrics Based on Synergy of Bacterial Repellence and Bactericidal Action
    Authors: Yao, J., Zheng, S., Wu, X., Cao, Z., Cui, Q.
    Year: 2023
    Citations: 5
  • Title: Manipulation of Surface Properties and Long-Term Antibacterial Performance of Composite Films via Alkyl Side Chain Engineering
    Authors: Wu, X., Yao, J., Guo, Y., Zheng, S., Cao, Z.
    Year: 2023
    Citations: 3
  • Title: Cleaning Steel by Devulcanizing Rubber from Used Automotive Tires
    Authors: Chen, Y., Ibrahim, S., Zheng, S., Bourke, A., Brook, M.A.
    Year: 2023
    Citations: 1
  • Title: Exploring Lipoic Acid-Mediated Dynamic Bottlebrush Elastomers as a New Platform for the Design of High-Performance Thermally Conductive Materials
    Authors: Zheng, S., Xue, H., Yao, J., Noman, M.E., Cao, Z.
    Year: 2023
    Citations: 6
  • Title: Hierarchical Surface Structure and Performance of Fluorinated Copolymer Films Derived from Side Chain Structure and α-Position Substitution of Fluorinated Monomeric Units
    Authors: Wu, X., Cao, J., Zheng, S., Cao, Z.
    Year: 2023
    Citations: 10
  • Title: Enhanced Thermal Conductivity of Phase Change Microcapsules Based on Boron Nitride/Graphene Oxide Composite Sheets
    Authors: Zhao, L., Wu, X., Hu, X., Zheng, S., Cao, Z.
    Year: 2023
    Citations: 12
Sijia Zheng | Materials Science | Best Researcher Award

You May Also Like