Mohammad Parhamfar | Engineering | Best Researcher Award

Dr. Mohammad Parhamfar | Engineering | Best Researcher Award

www.parhamfar.com, Iran

Dr. Mohammad Parhamfar is a distinguished renewable energy expert and electrical engineer specializing in solar energy, with 19 years of experience spanning software development, electrical engineering, and sustainable energy solutions. Holding a Doctor of Business Administration (DBA) and a Master’s in Renewable Energy, he has contributed significantly to the field through over 40 published papers, eight authored books, and multiple patents in electrical software design and lightning protection for solar farms. As a leader in solar project development, he has designed 50 MW solar projects, implemented 1 MW rooftop systems, and played a key role in Iran’s first 10 MW solar power plant. He has received numerous awards, including the 2023 Creative Researcher Award, and serves on the editorial boards of various energy-related journals. His innovations in energy management, microgrids, and carbon trading, along with his active participation in international conferences, cement his reputation as a pioneering researcher and industry leader.

Professional Profile 

Education

Dr. Mohammad Parhamfar holds a Doctor of Business Administration (DBA), a Master’s degree in Renewable Energy, and a Bachelor’s degree in Electrical Engineering. His multidisciplinary educational background integrates technical expertise with strategic business management, enabling him to drive innovation in renewable energy and electrical engineering. His academic journey has equipped him with deep knowledge in solar energy systems, electrical installations, and energy management. He has also obtained numerous technical certifications in solar designing, energy auditing, microgrids, and IEEE teaching standards, further strengthening his expertise in sustainable energy solutions. His commitment to education extends beyond personal learning, as he has actively contributed to academia as a lecturer in solar energy, sharing his knowledge with students and professionals. Dr. Parhamfar’s strong academic foundation, coupled with practical experience, has positioned him as a leader in the field, allowing him to contribute significantly to large-scale solar projects, research, and policy development.

Professional Experience

Dr. Mohammad Parhamfar boasts an extensive professional career spanning over 19 years in renewable energy, electrical engineering, and software development. He has held key leadership positions, including CEO of Yeganeh Energy, where he managed the implementation of solar projects, and CTO of Applebone Company, specializing in solar energy and IT solutions. Dr. Parhamfar has led the development of large-scale solar projects, including designing a 50 MW solar system and coordinating the first 10 MW solar power plant in Iran. He has also served as a project manager and electrical engineer for various high-profile projects, such as the 1000 MW solar farm in Isfahan and multiple international solar initiatives in Armenia and Oman. As a freelancer, he has provided consulting services to several organizations, contributing his expertise in renewable energy, electrical systems design, and project management. His work has earned him recognition as a leader in the renewable energy sector.

Research Interest

Dr. Mohammad Parhamfar’s research interests lie at the intersection of renewable energy, electrical engineering, and sustainable development. His primary focus is on solar energy systems, particularly the design, implementation, and optimization of large-scale solar projects. He is also deeply involved in the integration of artificial intelligence with renewable energy solutions to enhance efficiency and performance. Dr. Parhamfar is passionate about addressing climate change through sustainable energy practices, with research extending into carbon trading and energy management strategies. He has explored innovative topics like lightning protection systems, grounding techniques for solar farms, and the development of electrical software for energy systems. His contributions to the renewable energy field include pioneering projects such as the first low-energy government building in Isfahan and the world’s first lightning risk assessment software for solar power plants. Additionally, Dr. Parhamfar is committed to exploring microgrid technology and its role in optimizing energy distribution and reducing environmental impacts.

Award and Honor

Dr. Mohammad Parhamfar has received numerous prestigious awards and honors for his groundbreaking contributions to renewable energy and electrical engineering. In 2023, he was recognized as a Creative Researcher by the International Academic Achievements and Award for his innovative work in solar energy. His remarkable achievements have also earned him recognition as the Best Innovative Engineer in 2013 in Isfahan and the Best Author in Modern Technology Journal in 2024. Dr. Parhamfar’s excellence in solar energy and engineering was further acknowledged when he ranked first in his Master’s program in Renewable Energy. He has also received accolades for his contributions to the energy sector, including being selected for his pioneering work on solar power plant insurance in Iran. His extensive involvement in research and development has earned him a reputation as a leading expert in renewable energy and a recipient of several honors for his contributions to technology and sustainability.

Research Skill

Dr. Mohammad Parhamfar possesses exceptional research skills that blend technical expertise with innovative problem-solving in the fields of renewable energy, electrical engineering, and energy management. His extensive experience in solar energy systems has enabled him to lead and contribute to cutting-edge research projects, particularly in the areas of solar power plant design, lightning protection systems, and energy optimization. Dr. Parhamfar’s research skills are demonstrated through his ability to apply complex concepts such as artificial intelligence to renewable energy solutions, enhancing the efficiency and effectiveness of energy systems. He is adept at utilizing software development tools to create groundbreaking solutions like the world’s first lightning risk assessment software for solar plants. Additionally, his ability to collaborate across multidisciplinary teams and lead large-scale research initiatives has made him a key figure in the energy sector. His research is marked by creativity, practical application, and a strong commitment to sustainable energy solutions.

Conclusion

Mohammad Parhamfar is highly suitable for the Best Researcher Award, particularly in Renewable Energy and Electrical Engineering. His strong research portfolio, industry contributions, patents, and leadership roles make him a leading figure in his field. Strengthening his academic publication impact, securing more international research funding, and increasing global collaborations would further enhance his competitiveness for the award.

Publications Top Noted

  • Title: Towards the application of renewable energy technologies in green ports: Technical and economic perspectives
    Authors: AMA Mohammad Parhamfar, Iman Sadeghkhani
    Year: 2023
    Citation: IET Renewable Power Generation, Volume 37
  • Title: EMPOWERING THE GRID: TOWARD THE INTEGRATION OF ELECTRIC VEHICLES AND RENEWABLE ENERGY IN POWER SYSTEMS
    Authors: MP Alireza Zabihi
    Year: 2024
    Citation: International Journal of Energy Security and Sustainable Energy (IJESSE), Volume 23
  • Title: Towards the net zero carbon future: A review of blockchain‐enabled peer‐to‐peer carbon trading
    Authors: M Parhamfar, I Sadeghkhani, AM Adeli
    Year: 2024
    Citation: Energy Science & Engineering, Volume 12, Issue 3, Pages 1242-1264
  • Title: Increase power output and radiation in photovoltaic systems by installing mirrors
    Authors: A Zabihi, M Parhamfar, SS Duvvuri, M Abtahi
    Year: 2024
    Citation: Measurement: Sensors, Volume 31, Article 100946
  • Title: Lightning Risk Assessment Software Design for Photovoltaic Plants in Accordance with IEC 62305-2
    Authors: M Parhamfar
    Year: 2022
    Citation: Energy System Research, Volume 5, Issue 2, Page 21
  • Title: Frequency and Time Series Analysis of Surge Arrester in Power Distribution Systems
    Authors: A Zabihi, M Parhamfar
    Year: 2024
    Citation: Advances in Engineering and Intelligence Systems, Volume 3, Issue 03, Pages 94-103
  • Title: A Light Weight Mobile Net SSD Algorithm based identification and Detection of Multiple Defects in Ceramic Insulators
    Authors: NB Mohammad Parhamfar, P. Bhavya Sree, K. Balaji
    Year: 2024
    Citation: Journal of Modern Technology, Volume 1, Issue 1, Pages 59-74
  • Title: Towards Green Airports: Factors Influencing Greenhouse Gas Emissions and Sustainability through Renewable Energy
    Authors: M Parhamfar
    Year: 2024
    Citation: Next Research, Article 100060
  • Title: Feasibility Study and Design of Smart Low-Energy Building Electrical Installations (Case Study: Isfahan University, Virtual Faculty Building)
    Authors: SS Mohammad Parhamfar
    Year: 2023
    Citation: Energy Systems Research Journal, Volume 6, Issue 3, Pages 57-74
  • Title: The Study of Electrical Grid Components After Installing a 10 MW Photovoltaic Power Plant with Large-Scale Batteries at Peak Load by DigSilent Software
    Authors: AA Mohammad Parhamfar
    Year: 2022
    Citation: American Journal of Electrical Power and Energy Systems, Volume 11, Issue 5, Pages 97-107

Zhenyan Xia | Engineering | New Horizons Science Invention Award

Mr. Zhenyan Xia | Engineering | New Horizons Science Invention Award

Associate Professor at Tianjin University, China

Xia Zhenyan is an Associate Professor at Tianjin University, specializing in fluid mechanics, molecular dynamics, and physical chemistry. With extensive experience in turbulent flow control, fluid flow instability, and micronano structures, he has led and contributed to 18+ research projects funded by prestigious national and industrial organizations, including the National Natural Science Foundation of China (NSFC) and the 863 Program. His innovative research on superhydrophobic surfaces has introduced novel methods to reduce droplet contact time by 37%, with applications in engineering, coatings, and energy systems. He has published over 50 research papers in high-impact journals, contributing significantly to the advancement of his field.

Professional Profile

Education

Xia Zhenyan holds advanced degrees in mechanical engineering and fluid mechanics from Tianjin University. His academic training provided a strong foundation in theoretical modeling, computational fluid dynamics (CFD), and materials science, shaping his research focus on fluid flow behavior and molecular interactions. His educational background has enabled him to bridge the gap between fundamental research and real-world applications, particularly in engineering solutions involving microfluidics, nanotechnology, and hydrophobic surface design.

Professional Experience

Currently serving as an Associate Professor at the School of Mechanical Engineering, Tianjin University, Xia Zhenyan is also the Deputy Director of the Department of Mechanics. His professional career is marked by multidisciplinary research collaborations in fluid dynamics, advanced materials, and computational modeling. As the Principal Investigator (PI) of multiple national research projects, he has played a key role in developing innovative solutions for industrial fluid mechanics challenges. His expertise extends to engineering applications for energy-efficient materials, hydrodynamics, and smart surface technology, making him a recognized leader in his field.

Research Interests

Xia Zhenyan’s research focuses on fluid mechanics, molecular dynamics, and physical chemistry, with a particular interest in turbulent flow control, fluid flow instability, and micronano-structured surfaces. His work explores the theoretical and engineering applications of molecular dynamics in fluid interactions, contributing to advancements in superhydrophobic coatings, energy-efficient materials, and microfluidics. A key aspect of his research involves developing novel techniques to reduce droplet contact time on surfaces, which has potential applications in biomedical engineering, aerospace, and industrial coatings. His interdisciplinary approach integrates computational simulations, experimental studies, and theoretical modeling, driving innovations in fluid behavior prediction, nanotechnology applications, and hydrodynamic performance enhancement.

Awards and Honors

Xia Zhenyan has been recognized for his outstanding contributions to fluid mechanics and molecular dynamics through multiple national and institutional awards. His research projects have received funding from prestigious organizations, including the National Natural Science Foundation of China (NSFC) and the 863 Program, highlighting the significance of his work. His publications in high-impact journals such as Physics of Fluids and Computational Materials Science have earned him academic recognition. As a Principal Investigator (PI) of multiple groundbreaking projects, he has been honored for excellence in scientific innovation and engineering applications. Additionally, his role as Deputy Director of the Department of Mechanics at Tianjin University reflects his leadership in advancing mechanical engineering and fluid dynamics research.

Conclusion

Dr. Mohamed Kchaou is a highly deserving candidate for the Academic Excellence Recognition Award. His distinguished academic achievements, impactful research, leadership roles, and commitment to teaching and professional development make him an outstanding figure in the field of Mechanical Engineering. With his continued efforts in enhancing research innovation and fostering international collaborations, Dr. Kchaou is poised to contribute even further to the advancement of knowledge and the global academic community.

Publications Top Noted

  • Shi, H., Xu, H., Bai, Y., Xia, Z. (2025). The effect of superhydrophobic surfaces with circular ring on the contact time of droplet impact. Colloids and Surfaces A: Physicochemical and Engineering Aspects. Citations: 0
  • Shi, H., Hou, X., Xu, H., Bai, Y., Xia, Z. (2024). An analysis of the contact time of nanodroplets impacting superhydrophobic surfaces with square ridges. Computational Materials Science. Citations: 0
  • Tai, Y., Xu, H., Bai, Y., Wang, S., Xia, Z. (2022). Experimental investigation of the impact of viscous droplets on superamphiphobic surfaces. Physics of Fluids, 34(2), 022101. Citations: 8
  • Yan, K., Guo, X., Xia, Z. (2021). The experimental study on the characteristics of turbulent boundary layer based on the PIV technology of non-uniform interrogation window. Chinese Journal of Applied Mechanics, 38(4), pp. 1293–1300. Citations: 2
  • Tai, Y., Zhao, Y., Guo, X., Wang, S., Xia, Z. (2021). Research on the contact time of a bouncing microdroplet with lattice Boltzmann method. Physics of Fluids, 33(4), 042011. Citations: 11
  • Xia, Z., Zhao, Y., Yang, Z., Wang, S., Wang, M. (2021). The simulation of droplet impact on the super-hydrophobic surface with micro-pillar arrays fabricated by laser irradiation and silanization processes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 612, 125966. Citations: 22
  • Xia, Z., Xiao, Y., Yang, Z., Liu, X., Tian, Y. (2019). Droplet impact on the super-hydrophobic surface with micro-pillar arrays fabricated by hybrid laser ablation and silanization process. Materials, 12(5), 765. Citations: 27
  • Xia, Z., Li, Z., Li, J., Tian, Y. (2016). An experimental study on breakup characteristics of impinging jets. Journal of Tianjin University Science and Technology, 49(7), pp. 770–776. Citations: 6
  • Xu, L., Xia, Z., Zhang, M., Du, Q., Bai, F. (2015). Experimental research on breakup of 2D power law liquid film. Chinese Journal of Chemical Engineering, 23(9), pp. 1429–1439. Citations: 3
  • Li, J.-J., Xia, Z.-Y., Tian, Y. (2015). Experiment on breakup mechanism of impinging jet of power-law liquid. Journal of Aerospace Power, 30(7), pp. 1752–1758. Citations: 1

Mohammad Hossein Khosravi | Engineering | Best Researcher Award

Assoc. Prof. Dr. Mohammad Hossein Khosravi | Engineering| Best Researcher Award

Associate Professor at University of Birjand, Iran

Mohammad Hossein Khosravi is an Associate Professor in the Department of Mining Engineering at the University of Birjand, Iran. He holds a Ph.D. in Geotechnical Engineering from the Tokyo Institute of Technology and has a broad academic background, including an M.Sc. in Rock Mechanics from the University of Tehran. His research interests focus on geomechanics, rock/soil slope engineering, and tunneling, with a particular emphasis on physical modeling and retaining structures. Khosravi has earned numerous prestigious awards, including best paper/presentation honors at international conferences and a Ph.D. scholarship from Japan’s Monbukagakusho. He has also gained valuable experience through postdoctoral research at the Center for Urban Earthquake Engineering and consulting roles in geotechnical engineering. He is actively involved in several professional organizations and has been a faculty member at both the University of Birjand and the University of Tehran. His research and academic achievements have made significant contributions to the field of geotechnical engineering.

Professional Profile

Education

Mohammad Hossein Khosravi has an impressive academic background. He earned his Ph.D. in Geotechnical Engineering from the Tokyo Institute of Technology in Japan, completing his dissertation on the arching effect in geomaterials with applications to retaining walls and undercut slopes. Prior to that, he obtained an M.Sc. in Rock Mechanics from the University of Tehran, where he conducted research on the groutability of alluvial deposits at the Kheirabad Dam foundation. He began his academic journey with a B.Sc. in Mining Engineering from Shahid Bahonar University of Kerman, where he studied the permeability of oxidized copper ore against water and sulfuric acid. His educational path reflects a deep commitment to advancing geotechnical engineering and geomechanics.

Professional Experience

Mohammad Hossein Khosravi has extensive professional experience in both academia and industry. He is currently an Associate Professor in the Department of Mining Engineering at the University of Birjand, Iran, where he contributes to both teaching and research. Previously, he served as an Assistant Professor at the University of Tehran, further strengthening his academic profile. Khosravi’s professional experience extends beyond academia; he was a postdoctoral research fellow at the Center for Urban Earthquake Engineering at the Tokyo Institute of Technology and worked as a Geotechnical Consulting Engineer at TaiseiKiso Sekkei Company in Japan. Additionally, he has held positions as a university lecturer and geotechnical site engineer, where he applied his expertise in real-world projects. His career demonstrates a successful blend of teaching, research, and practical experience in geotechnical engineering.

Research Interest

Mohammad Hossein Khosravi’s research interests are primarily focused on geomechanics, with a specific emphasis on rock/soil slope engineering, tunneling, and the behavior of retaining structures. He is particularly interested in physical modeling in geotechnical engineering, investigating the complex interactions of geomaterials under various stress conditions. His work also explores the arching effect in geomaterials, which has significant applications in the design and stability of retaining walls and undercut slopes. These areas of research are critical for improving the safety and efficiency of infrastructure projects such as tunnels, slopes, and retaining structures, making his work highly relevant to both academia and industry in the field of geotechnical engineering.

Award and Honor

Mohammad Hossein Khosravi has received numerous prestigious awards and honors throughout his academic and professional career. Notably, he was recognized with certificate awards for best paper and presentation at the 10th International Conference on Earthquake Engineering in Tokyo (2012) and the Japanese Geotechnical Conference (2010), reflecting the high quality and impact of his research. He also earned a postdoctoral fellowship from the Center for Urban Earthquake Engineering (CUEE) in Tokyo in 2012, further solidifying his expertise in geotechnical engineering. Khosravi was awarded a Ph.D. scholarship by Japan’s Ministry of Education, Culture, Sports, Science, and Technology (Monbukagakusho) for his doctoral studies. Additionally, he was recognized as the second-ranked student in his M.Sc. program and the first-ranked student in his B.Sc. program, both achievements earning him notable accolades. His exceptional academic and research achievements demonstrate his dedication and influence in his field.

Conclusion

Mohammad Hossein Khosravi’s strong academic foundation, innovative research contributions, international exposure, and recognition through awards make him a very suitable candidate for the Best Researcher Award. His work in geotechnical engineering addresses crucial issues in infrastructure and safety, which are of global importance. By expanding his research visibility and collaborations, he has the potential to further elevate his impact in the scientific community. Overall, he demonstrates the qualities and achievements expected of a Best Researcher Award recipient.

Publications Top Noted

  • Title: Determination of the caving zone height using numerical and physical modeling based on the undercutting method, joint dip, and spacing
    Authors: Alipenhani, B., Jalilian, M., Majdi, A., Bakhshandeh Amnieh, H., Khosravi, M.H.
    Year: 2024
    Citations: 2
  • Title: Use of LBPs to estimate VBPs as observed from an investigation of physical model bimrocks
    Authors: Najafvand, K., Khosravi, M.H., Amini, M., Medley, E.
    Year: 2024
    Citations: 0
  • Title: Introducing a new rock abrasivity index using a scaled down disc cutter
    Authors: Moradi, M., Khosravi, M.H., Hamidi, J.K.
    Year: 2024
    Citations: 1
  • Title: Soil Arching and Ground Deformation around Tunnels in Sandy Grounds: Review and New Insights
    Authors: Khandouzi, G., Khosravi, M.H.
    Year: 2024
    Citations: 2
  • Title: Numerical modelling of cohesive-frictional soil behind inclined retaining wall under passive translation mode
    Authors: Sarfaraz, H., Khosravi, M.H., Pipatpongsa, T.
    Year: 2024
    Citations: 0
  • Title: Performance Evaluation of Artificial Neural Networks and Support Vector Regression in Tunneling-Induced Settlement Prediction Incorporating Umbrella Arch Method Characteristics
    Authors: Varjovi, M.A., Rahmanpour, M., Khosravi, M.H., Majdi, A., Le, B.T.
    Year: 2024
    Citations: 1
  • Title: A review on the buried pipeline responses to tunneling-induced ground settlements
    Authors: Mahmoudi, H., Khandouzi, G., Khosravi, M.H.
    Year: 2024
    Citations: 0
  • Title: Mobilization of Cohesion and Friction Angle of Intact Rocks in the Shearing Process
    Authors: Alidaryan, M., Khosravi, M.H., Bahaaddini, M., Moosavi, M., Roshan, H.
    Year: 2023
    Citations: 3
  • Title: An analytical investigation of soil arching induced by tunneling in sandy ground
    Authors: Khandouzi, G., Khosravi, M.H.
    Year: 2023
    Citations: 10
  • Title: Theoretical and Numerical Analysis of Cohesive-Frictional Backfill against Battered Retaining Wall under Active Translation Mode
    Authors: Sarfaraz, H., Khosravi, M.H., Pipatpongsa, T.
    Year: 2023
    Citations: 7

Mohamed Kchaou | Engineering | Academic Excellence Recognition Award

Prof. Dr. Mohamed Kchaou | Engineering | Academic Excellence Recognition Award

Professeur at Department of Engineering, College of Engineering, University of Bisha, Saudi Arabia

Dr. Mohamed Kchaou is a Professor of Mechanical Engineering at the University of Bisha, Saudi Arabia, specializing in sustainability and research. He holds an impressive academic background, with an h-index of 21 and significant professional achievements, including a nomination for Full Membership in Sigma Xi, The Scientific Research Honor Society. His work has earned him recognition as one of the top 5 scientists at the University of Bisha in 2025, ranked first in Engineering & Technology. In addition to his academic roles, he contributes to international relations, scientific research, and graduate studies. He has worked in various international institutions and is recognized for his leadership in the academic and research communities, particularly in mechanical engineering, tribology, and innovation.

Professional Profile

Education 

Dr. Kchaou earned his Ph.D. in Mechanical Engineering from the Ecole Centrale of Lille (France) and the University of Sfax (Tunisia) in 2010. His thesis focused on the coupling friction oxidation effect on the wear of H13 steel, specifically for hot forging applications. He completed his Master’s degree in Mechanics and Engineering from the National School of Engineers of Sfax in 2007, where he studied performance and damage in a copper alloy under torsion fatigue. His academic journey began with a Bachelor’s in Electromechanical Engineering from the National School of Engineers of Sfax in 2006. His educational foundation laid the groundwork for his expertise in tribology, sustainability, and materials science.

Professional Experience

Dr. Kchaou holds a distinguished academic career, currently serving as a full Professor at the University of Bisha, where he also plays an integral role as a Consultant to the Deputy Vice-Chancellor for Graduate Studies and Scientific Research. His leadership in international relations and research partnerships has made significant impacts on the university. Previously, he served as the Vice-Dean at the Higher Institute of Arts and Crafts of Sfax and has been involved with several prestigious universities across Europe, including in France, Spain, and Turkey. Throughout his career, he has held various positions ranging from Assistant Professor to Associate Professor, delivering impactful courses in materials science, industrial management, and mechanical engineering at different international institutions. Dr. Kchaou’s diverse academic and administrative roles reflect his expertise and commitment to advancing engineering education and research.

Research Interests

Dr. Mohamed Kchaou’s research primarily focuses on sustainability, tribology, and the performance of materials in mechanical engineering. His work explores the friction oxidation effects on wear and tear, especially in the context of hot forging applications, aiming to improve the durability and efficiency of materials under extreme conditions. He is also interested in the development and optimization of new materials, particularly in relation to mechanical behavior and damage tolerance under different loading conditions. Dr. Kchaou’s expertise spans multiple aspects of materials science, including fatigue behavior, wear mechanisms, and the interplay between mechanical properties and environmental factors. He has a keen interest in applying these insights to various industries, such as automotive and manufacturing, to promote energy-efficient and environmentally sustainable solutions. His research contributes to advancing both theoretical knowledge and practical applications in materials engineering and mechanical systems.

Awards and Honors

Dr. Mohamed Kchaou has earned numerous prestigious awards and honors throughout his academic career. Notably, he has been nominated for Full Membership in Sigma Xi, The Scientific Research Honor Society, recognizing his significant contributions to the field of mechanical engineering. In 2025, he was ranked as one of the top 5 scientists at the University of Bisha, securing the first position in the Engineering & Technology category. Dr. Kchaou’s h-index of 21 is a testament to the impact and relevance of his research in the scientific community. Furthermore, he has been recognized for his leadership and academic excellence, particularly for his significant contributions to international collaborations in research and higher education. His ability to bridge academic expertise with real-world challenges has made him a prominent figure in the engineering field, particularly in the domains of sustainability and tribology.

Conclusion

Dr. Mohamed Kchaou is a highly deserving candidate for the Academic Excellence Recognition Award. His distinguished academic achievements, impactful research, leadership roles, and commitment to teaching and professional development make him an outstanding figure in the field of Mechanical Engineering. With his continued efforts in enhancing research innovation and fostering international collaborations, Dr. Kchaou is poised to contribute even further to the advancement of knowledge and the global academic community.

Publications Top Noted

  • Oily wastewater treatment: Overview of conventional and modern methods, challenges, and future opportunities
    Authors: K Abuhasel, M Kchaou, M Alquraish, Y Munusamy, YT Jeng
    Year: 2021
    Citations: 249
  • An overview of green corrosion inhibitors for sustainable and environment friendly industrial development
    Authors: N Hossain, M Asaduzzaman Chowdhury, M Kchaou
    Year: 2021
    Citations: 198
  • Friction characteristics of a brake friction material under different braking conditions
    Authors: M Kchaou, A Sellami, R Elleuch, H Singh
    Year: 2013
    Citations: 103
  • Steam explosion as sustainable biomass pretreatment technique for biofuel production: Characteristics and challenges
    Authors: AT Hoang, XP Nguyen, XQ Duong, Ü Ağbulut, C Len, PQP Nguyen, …
    Year: 2023
    Citations: 97
  • Surface characterization and mechanical behavior of aluminum based metal matrix composite reinforced with nano Al2O3, SiC, TiO2 particles
    Authors: MBA Shuvho, MA Chowdhury, M Kchaou, BK Roy, A Rahman, MA Islam
    Year: 2020
    Citations: 91
  • Experimental investigation on the tribo-thermal properties of brake friction materials containing various forms of graphite: a comparative study
    Authors: S Manoharan, R Vijay, D Lenin Singaravelu, M Kchaou
    Year: 2019
    Citations: 89
  • Squealing characteristics of worn brake pads due to silica sand embedment into their friction layers
    Authors: ARM Lazim, M Kchaou, MKA Hamid, ARA Bakar
    Year: 2016
    Citations: 70
  • Experimental studies of friction-induced brake squeal: influence of environmental sand particles in the interface brake pad-disc
    Authors: M Kchaou, ARM Lazim, MKA Hamid, ARA Bakar
    Year: 2017
    Citations: 69
  • Failure mechanisms of H13 die on relation to the forging process–A case study of brass gas valves
    Authors: M Kchaou, R Elleuch, Y Desplanques, X Boidin, G Degallaix
    Year: 2010
    Citations: 69
  • Development and performance evaluation of eco-friendly crab shell powder based brake pads for automotive applications
    Authors: DL Singaravelu, R Vijay, S Manoharan, M Kchaou
    Year: 2019
    Citations: 63
  • Study of the interaction between microstructure, mechanical and tribo-performance of a commercial brake lining material
    Authors: A Sellami, M Kchaou, R Elleuch, AL Cristol, Y Desplanques
    Year: 2014
    Citations: 60
  • 3D-printed objects for multipurpose applications
    Authors: N Hossain, MA Chowdhury, MBA Shuvho, MA Kashem, M Kchaou
    Year: 2021
    Citations: 46
  • Water absorption and mechanical behaviour of green fibres and particles acting as reinforced hybrid composite materials
    Authors: M Kchaou, SJ Arul, A Athijayamani, P Adhikary, S Murugan, FK Aldawood, …
    Year: 2023
    Citations: 43
  • Investigation on tribological and corrosion characteristics of oxide-coated steel and mild steel fiber-based brake friction composites
    Authors: S Manoharan, R Vijay, M Kchaou
    Year: 2018
    Citations: 34
  • Surface disinfection to protect against microorganisms: Overview of traditional methods and issues of emergent nanotechnologies
    Authors: M Kchaou, K Abuhasel, M Khadr, F Hosni, M Alquraish
    Year: 2020
    Citations: 32

Giada Kyaw Oo D’Amore | Engineering | Best Researcher Award

Dr. Giada Kyaw Oo D’Amore | Engineering | Best Researcher Award

Assegnista da Ricerca at Università di Trieste, Italy

Giada Kyaw Oo D’Amore is an esteemed researcher and professor in the field of industrial engineering, with a special focus on marine, mechanical, and energy engineering. She currently serves as a Professor on Contract at the University of Trieste and as a Research Fellow at the same institution. Over the years, Giada has demonstrated expertise in various engineering areas, including noise reduction technologies and metamaterials for marine applications. She has also worked in the industry as a Project Leader at Phononic Vibes s.r.l., contributing to national and international research projects. Giada’s research is widely published in prominent journals, and she holds several leadership positions, including guest editor roles for renowned journals. Her work continues to contribute to innovative solutions for sustainable engineering practices, particularly in marine and environmental applications.

Professional Profile

Education

Giada Kyaw Oo D’Amore holds a PhD in Industrial Engineering from the University of Trieste, specializing in mechanical, marine, energy, and production engineering. She completed her doctoral research from November 2018 to March 2022, deepening her expertise in advanced engineering solutions. Additionally, Giada earned a Master’s degree in Marine Engineering from the University of Trieste in 2018. This solid educational foundation has enabled her to combine theoretical knowledge with practical applications, particularly in marine and environmental engineering contexts. Her education has been pivotal in shaping her research contributions and professional pursuits.

Professional Experience

Giada Kyaw Oo D’Amore has an extensive professional background, with roles spanning academia and industry. She has been serving as a Professor on Contract at the University of Trieste since 2021, where she teaches and leads research projects. From 2023 to present, she has also held the position of Research Fellow at the university, focusing on innovative engineering applications. Giada’s industry experience includes a leadership role at Phononic Vibes s.r.l., a spin-off from Politecnico di Milano, where she led R&D projects for national and international calls. She began her career as a Junior R&D Developer at Materialscan s.r.l., a spin-off of the University of Trieste. Her professional work encompasses significant contributions to the fields of acoustic engineering, material science, and noise reduction technologies.

Awards and Honors

Giada Kyaw Oo D’Amore has garnered recognition for her groundbreaking work in marine and environmental engineering. Her contributions have been widely acknowledged, particularly in the realm of noise reduction technologies and the application of metamaterials for soundproofing in marine systems. In addition to her academic accolades, Giada has held various esteemed positions, including guest editor for renowned journals like Applied Sciences, where she edited special issues on engineering applications and finite element methods. Her work has also been featured in numerous leading international conferences and publications, underlining her impact on the field. Giada’s commitment to research excellence and her role in advancing sustainable engineering practices have earned her respect within the academic and industrial communities.

Research Interest

Giada Kyaw Oo D’Amore’s research interests lie at the intersection of industrial engineering, marine engineering, and energy sustainability. She focuses primarily on the development of innovative technologies for noise reduction and the application of metamaterials to improve acoustic performance, particularly in marine environments. Her research also delves into the optimization of after-treatment systems to reduce ships’ acoustic footprints and environmental impact. Giada’s expertise extends to numerical simulations, finite element analysis, and computational fluid dynamics, which she uses to model and optimize complex engineering systems. She is particularly interested in creating multifunctional solutions, such as marine scrubbers, that address both emission control and acoustic challenges. Her work is committed to advancing sustainable engineering solutions that minimize environmental and acoustic pollution in the marine sector.

Publications Top Noted

  • Title: A Design-Oriented Model for Transmission Loss Optimization in Marine DOCs
    Authors: Kašpar, J., Mauro, F., Biot, M., Rognoni, G., Kyaw Oo D’Amore, G.
    Year: 2024
    Citations: 0
  • Title: Application of Modal Analysis for the Vibrational Comfort Investigation on Board Ships: a Case Study
    Authors: Rognoni, G., Mažeika, P., D’Amore, G.K.O., Djačkov, V., Biot, M.
    Year: 2024
    Citations: 0
  • Title: Numerical study on modelling perforated elements using porous baffle interface and porous region
    Authors: Kyaw Oo D’Amore, G., Mauro, F.
    Year: 2023
    Citations: 5
  • Title: Integration and optimization of the after-treatments systems to reduce the acoustic footprint of the ships
    Authors: Kyaw Oo D’Amore, G., Morgut, M., Biot, M., Mauro, F., Kašpar, J.
    Year: 2023
    Citations: 2
  • Title: Investigation on the Impact of a Metamaterial Solution for the Mitigation of Noise Radiated by a Ship Panel
    Authors: Rognoni, G., D’amore, G.K.O., Brocco, E., Moro, L., Biot, M.
    Year: 2023
    Citations: 1
  • Title: Acoustic black holes: The new frontier for soundproofing on board ships
    Authors: D’Amore, G.K.O., Rognoni, G., Biot, M., Mauro, F.
    Year: 2023
    Citations: 1
  • Title: A Preliminary Study of a Multifunctional DOC/Wet-Scrubber Capable to Reduce both Chemical and Acoustic Emissions in Marine Field
    Authors: Kyaw Oo D’Amore, G., Kašpar, J.
    Year: 2023
    Citations: 0
  • Title: A Numerical Method to Fit the Need of a Straightforward Characterization of Viscoelastic Materials for Marine Applications
    Authors: Rognoni, G., Kyaw Oo D’Amore, G., Brocco, E., Biot, M.
    Year: 2022
    Citations: 1
  • Title: A Combined CFD-FEM Approach to Evaluate Acoustic Performances of an Integrated Scrubber-Silencer for Marine Applications
    Authors: Kyaw Oo D’Amore, G., Mauro, F., Morgut, M., Rognoni, G., Biot, M.
    Year: 2022
    Citations: 1
  • Title: A Metamaterial Solution for Soundproofing on Board Ship
    Authors: Kyaw Oo D’Amore, G., Caverni, S., Biot, M., Rognoni, G., D’alessandro, L.
    Year: 2022
    Citations: 5

Prof. Dr. Gholamreza Asadollahfardi | Engineering | Best Paper Award

Prof. Dr. Gholamreza Asadollahfardi | Engineering | Best Paper Award

Professor at Kharazmi University, Iran

Prof. Dr. Gholamreza Asadollahfardi is an Emeritus Professor in Environmental Engineering at Kharazmi University, Tehran, Iran, with a distinguished academic and professional career. He holds a Ph.D. in Environmental Engineering from London University, UK, and has extensive experience in water quality monitoring, wastewater treatment, environmental impact assessment, and sustainable construction practices. Dr. Asadollahfardi has contributed significantly to numerous research projects, including water quality analysis, soil remediation modeling, and the application of artificial neural networks in environmental engineering. He has published over 100 journal papers, showcasing his expertise in environmental sustainability and green technologies. In addition to his academic achievements, Dr. Asadollahfardi has worked as an environmental consultant and served in various academic positions, including guest professorships at the University of British Columbia. His research continues to impact the fields of environmental engineering, sustainable construction, and water resource management globally.

Professional Profile 

Education

Prof. Dr. Gholamreza Asadollahfardi completed his higher education with a strong focus on environmental engineering. He earned his Bachelor’s degree in Civil Engineering from Sharif University of Technology in Tehran, Iran, followed by a Master’s degree in Environmental Engineering from the same institution. His academic journey reached its pinnacle with a Ph.D. in Environmental Engineering from London University, UK. During his doctoral studies, Dr. Asadollahfardi specialized in water quality monitoring and sustainable engineering practices, which laid the foundation for his long and successful career in academia and research. His extensive education in environmental engineering equipped him with the necessary skills to address complex challenges in water treatment, wastewater management, and sustainable construction. Through his rigorous academic background, Dr. Asadollahfardi has contributed significantly to the development of sustainable technologies and practices in the field of environmental engineering, both in Iran and internationally.

Professional Experience

Prof. Dr. Gholamreza Asadollahfardi has an extensive and distinguished professional career in environmental engineering, contributing significantly to both academia and industry. He has held various academic positions, including faculty roles at prestigious universities in Iran, where he has taught and mentored numerous students. Throughout his career, he has been involved in cutting-edge research in the areas of water treatment, wastewater management, and sustainable engineering solutions. Dr. Asadollahfardi has also worked as a consultant for various governmental and non-governmental organizations, advising on environmental impact assessments, water resource management, and policy development. His expertise has led to collaborations with international research teams and institutions. As a recognized leader in his field, he has published extensively in peer-reviewed journals and participated in various environmental engineering conferences worldwide. Prof. Dr. Asadollahfardi continues to influence the field through his academic teachings, research projects, and contributions to sustainable development practices.

Research Interest

Prof. Dr. Gholamreza Asadollahfardi’s research interests focus on environmental engineering, with a particular emphasis on water treatment, wastewater management, and sustainable resource management. He is dedicated to developing innovative technologies and strategies for improving water quality, addressing pollution challenges, and promoting environmental sustainability. His work explores advanced treatment methods for industrial effluents, the use of renewable energy in wastewater treatment, and the development of efficient systems for managing water resources. Dr. Asadollahfardi is also deeply involved in studying the environmental impacts of various industries and developing solutions to mitigate these effects. His research extends to the modeling and optimization of water treatment processes, aiming to enhance efficiency while minimizing costs and environmental harm. Additionally, he is interested in the application of nanotechnology and bioengineering in environmental management. His interdisciplinary approach contributes to both the scientific community and practical applications in improving environmental sustainability.

Award and Honor

Prof. Dr. Gholamreza Asadollahfardi has received numerous awards and honors throughout his career, recognizing his outstanding contributions to environmental engineering and water treatment research. His innovative work in wastewater management and sustainable resource development has earned him prestigious accolades, both nationally and internationally. Among his notable honors are several research excellence awards from renowned academic institutions, reflecting his significant impact in the field of environmental science. Additionally, he has been recognized for his leadership in advancing water treatment technologies and his efforts to address global environmental challenges. Dr. Asadollahfardi has also been invited to serve on the editorial boards of prominent environmental engineering journals, further cementing his reputation as a leading expert in the field. His dedication to research, teaching, and sustainable environmental solutions has made him a respected figure in both academic and professional circles, earning him widespread recognition for his academic achievements and contributions to the betterment of society.

Conclusion

Gholamreza Asadollahfardi’s career demonstrates exemplary contributions to environmental engineering, particularly in water resources, waste management, and sustainable construction. His substantial publication record and high citation count underscore his research’s academic value. Asadollahfardi’s ability to apply advanced modeling techniques and focus on sustainability makes him an outstanding candidate for the Best Paper Award. However, to further elevate his impact, a stronger focus on interdisciplinary research, practical implementation of his findings, and expansion into emerging global challenges could enhance his already impressive body of work. Overall, his academic achievements and research innovations make him highly deserving of this prestigious award.

Publications Top Noted

  • Title: Use of treated domestic wastewater before chlorination to produce and cure concrete
    Authors: G Asadollahfardi, M Delnavaz, V Rashnoiee, N Ghonabadi
    Year: 2016
    Citations: 127
  • Title: Experimental and statistical studies of using wash water from ready-mix concrete trucks and a batching plant in the production of fresh concrete
    Authors: Gholamreza Asadollahfardi, Mohsen Asadi, Hamidreza Jafari
    Year: 2015
    Citations: 117
  • Title: Investigation of cadmium absorption and accumulation in different parts of some vegetables
    Authors: B Yargholi, AA Azimi, A Baghvand, AM Liaghat, GA Fardi
    Year: 2008
    Citations: 104
  • Title: Evaluating and improving the construction and demolition waste technical properties to use in road construction
    Authors: G Tavkoli Mehrjardi, Gholamhosien, Azizi, Alireza, Haji-aziz, Amanj …
    Year: 2020
    Citations: 91
  • Title: The Influence of Safety Training on Safety Climate Factors in a Construction Site
    Authors: GRAF MOHAMMAD JAVAD JAFARI, MEHDI GHARARI, MOHTASHAM GHAFARI, LEILA OMIDI …
    Year: 2014
    Citations: 83
  • Title: Application of Artificial Neural Network to Predict TDS in Talkheh Rud River
    Authors: G Asadollahfardi, A Taklify, A Ghanbari
    Year: 2012
    Citations: 81
  • Title: The feasibility of using treated industrial wastewater to produce concrete
    Authors: G Asadollahfardi, AR Mahdavi
    Year: 2019
    Citations: 71
  • Title: The difference in chloride ion diffusion coefficient of concrete made with drinking water and wastewater
    Authors: MS Hassani, G Asadollahfardi, SF Saghravani, S Jafari, …
    Year: 2020
    Citations: 61
  • Title: Environmental life cycle assessment of concrete with different mixed designs
    Authors: G Asadollahfardi, A Katebi, P Taherian, A Panahandeh
    Year: 2021
    Citations: 57
  • Title: The effects of using treated wastewater on the fracture toughness of the concrete
    Authors: FS Peighambarzadeh, G Asadollahfardi, J Akbardoost
    Year: 2020
    Citations: 52
  • Title: The influence of safety training on improvement in safety climate in construction sites of a firm
    Authors: Mohammad Javad Jafari, Mehdi Ghafari, Saba Kalantari, Leila Omidi, Mohtasham Ghafari, …
    Year: 2015
    Citations: 52
  • Title: Comparison of different extracting agents for the recovery of Pb and Zn through electrokinetic remediation of mine tailings
    Authors: G Asadollahfardi, MS Sarmadi, M Rezaee, A Khodadadi-Darban, …
    Year: 2021
    Citations: 51

Tharindu Madhushanka | Engineering | Best Researcher Award

Mr. Tharindu Madhushanka | Engineering | Best Researcher Award

Engineer at Browns Engineering and Construction, Sri Lanka

Mr. Tharindu Indunil Madhushanka is a promising researcher and civil engineering professional from the University of Moratuwa, Sri Lanka. He holds a Master of Science in Civil Engineering, with a focus on using artificial intelligence for flood forecasting, specifically in the Polonnaruwa region. His research integrates machine learning techniques such as LSTM, ANN, and Transformer models to predict water levels using meteorological and hydrological data. Tharindu has also contributed to sustainable construction through his undergraduate research on the thermal performance and embodied energy of precast panel buildings. His academic achievements include a GPA of 3.54 in Civil Engineering and notable publications, including a paper in the Journal of Hydrologic Engineering. He has gained hands-on experience in both teaching and industry, having worked as an instructor and research assistant at the University of Moratuwa and a trainee civil engineer. Tharindu is dedicated to advancing AI applications in civil engineering for disaster management and sustainability.

Professional Profile

Education

Mr. Tharindu Indunil Madhushanka has a strong educational background in civil engineering, having completed his Bachelor of Science in Civil Engineering (Honors) from the University of Moratuwa, Sri Lanka, where he graduated with a second-class upper division and a GPA of 3.54 out of 4.2. His undergraduate studies provided him with a solid foundation in engineering principles and practices. He further pursued a Master of Science at the same university, beginning in November 2022, with a research focus on utilizing artificial intelligence to forecast floods, particularly in the Polonnaruwa region of Sri Lanka. Under the guidance of Prof. M.T.R. Jayasinghe, his postgraduate research aims to develop machine learning models for predicting water levels using meteorological and hydrological data. This interdisciplinary approach bridges civil engineering and AI, reflecting his commitment to advancing both fields. His studies are set to culminate in July 2024, contributing valuable insights to flood risk management.

Professional Experience

Mr. Tharindu Indunil Madhushanka has gained valuable professional experience through both academic and industry roles. As a research assistant at the Department of Civil Engineering, University of Moratuwa, he contributed to various engineering modules, including Mechanics, Structural Mechanics, and the Design of Large Structures. His responsibilities included assisting in teaching and providing support for courses such as Building Construction & Materials and Design of Masonry and Timber Structures. Additionally, Tharindu worked as an instructor in the Department of Computer Science Engineering, teaching Programming Fundamentals from June to September 2024. His industry experience includes serving as a trainee civil engineer at RR Construction (Pvt) Ltd, where he was involved in significant projects such as the Mahaweli Water Security Investment Program. These projects, including the Minipe Left Bank Canal Rehabilitation and North-Western Province Canal Project, provided him with hands-on experience in large-scale civil engineering works, enhancing his practical skills.

Research Interest

Mr. Tharindu Indunil Madhushanka’s research interests lie at the intersection of civil engineering and artificial intelligence, with a focus on disaster risk management and sustainable construction. His primary research area is the use of machine learning techniques, particularly deep learning models like LSTM, ANN, and Transformer, to forecast floods and predict water levels in flood-prone regions, such as Polonnaruwa, Sri Lanka. By utilizing meteorological and hydrological data, Tharindu aims to enhance flood prediction systems, providing valuable insights for mitigating the impacts of natural disasters. Additionally, he is interested in sustainable building practices, as demonstrated by his undergraduate research on the thermal performance and embodied energy of precast panel buildings. Tharindu’s work seeks to improve the environmental efficiency of construction materials and methods, making buildings more energy-efficient over their life cycles. His research reflects his commitment to advancing both AI applications and sustainability within the civil engineering field.

Award and Honor

Mr. Tharindu Indunil Madhushanka has achieved notable academic recognition throughout his educational journey. He graduated with a second-class upper division in his Bachelor of Science in Civil Engineering (Honors) from the University of Moratuwa, Sri Lanka, with a commendable GPA of 3.54 out of 4.2. This achievement underscores his strong academic performance and dedication to his studies. Tharindu has also earned recognition for his research contributions, particularly in the field of flood forecasting using artificial intelligence. His publication, “Multiple-Day-Ahead Flood Prediction in the South Asian Tropical Zone Using Deep Learning,” in the Journal of Hydrologic Engineering, demonstrates the impact of his work on flood management. Although his H-index is currently 1, it reflects his emerging influence in the research community. Tharindu’s research on sustainable building practices, including the thermal performance of precast panel buildings, has been presented at international conferences, further highlighting his growing recognition within the civil engineering and AI research communities.

Conclusion

Tharindu Indunil Madhushanka demonstrates a strong foundation in innovative, interdisciplinary research, particularly in leveraging artificial intelligence for flood forecasting and sustainable building practices. His academic achievements, technical expertise, and impactful research in disaster management are highly commendable.

Publications Top Noted

  • Title: Multi Day Ahead Flood Prediction in South Asian Tropical Zone Using Deep Learning
    Authors: T Madhushanka, T Jayasinghe, R Rajapakse
    Year: 2024
    Cited by: 1
  • Title: Multiple-Day-Ahead Flood Prediction in the South Asian Tropical Zone Using Deep Learning
    Authors: G Madhushanka, MTR Jayasinghe, RA Rajapakse
    Journal: Journal of Hydrologic Engineering 30 (1), 04024054
    Year: 2025
    Cited by: Not available
  • Title: Behavior of LSTM and Transformer Deep Learning Models in Flood Simulation Considering South Asian Tropical Climate
    Authors: G Madhushanka, MTR Jayasinghe, RA Rajapakse
    Year: 2024
    Cited by: Not available
  • Title: Transformer & LSTM Based Models for Multi-Day Ahead Flood Prediction in Tropical Climates
    Authors: T Madhushanka, T Jayasinghe, R Rajapakse
    Year: 2024
    Cited by: Not available
    Available at: SSRN 4746297
  • Title: Flood Prediction for Tropical Climates Using LSTM and Transformer Machine Learning Models
    Authors: T Madhushanka, T Jayasinghe, R Rajapakse
    Year: 2024
    Cited by: Not available
    Available at: SSRN 4736261
  • Title: LONG SHORT-TERM MEMORY (LSTM) & FEEDFORWARD ARTIFICIAL NEURAL NETWORK (ANN) FOR FLOOD PREDICTION
    Authors: G.W.T.I. Madhushanka, M.T.R. Jayasinghe, R.A. Rajapakse
    Event: Proceedings of the 14th International Conference on Sustainable Built …
    Year: 2023
    Cited by: Not available
  • Title: Thermal Performance of Precast Panel Buildings
    Authors: G Madhushanka, SS Bandaranayaka, MTR Jayasinghe, H Herath
    Event: University of Ruhuna
    Year: 2023
    Cited by: Not available

Haojie Li | Chemical Process | Best Researcher Award

Assoc. Prof. Dr.Haojie Li | Chemical Process | Best Researcher Award 

Associate Professor at Shihezi University, China

Haojie Li is an Associate Professor at Shihezi University, specializing in Chemical Engineering with a focus on multiphase process intensification, carbon capture, heat transfer, and mass transfer. Over the course of his career, Li has made significant contributions to energy, chemical industries, and environmental research, leading several projects in these areas. His expertise is evident in the development of novel technologies for CO2 capture, heat exchangers, and thermosyphon systems. Li has published 15 high-level papers and holds multiple patents, with numerous national and international collaborations. His work has earned him prestigious awards, such as first prizes for teaching and research achievements, reflecting his prominence in the academic and professional chemical engineering community.

Professional Profile

Education

Haojie Li completed his Bachelor’s degree in Chemical Engineering at Shandong University of Technology in 2014. He further pursued a Doctorate in Chemical Engineering at Tianjin University, graduating in 2022. Throughout his education, Li focused on advanced chemical process technologies, gaining deep expertise in process intensification, heat and mass transfer, and computational fluid dynamics. His doctoral research was aimed at enhancing energy efficiency and environmental sustainability through innovative engineering solutions. Li’s educational background laid a strong foundation for his career, combining both theoretical knowledge and practical application. His studies provided him with the skills to tackle complex industrial problems and laid the groundwork for his subsequent achievements in both academia and industry.

Experience

Haojie Li’s academic career began in 2022 at Shihezi University, where he was appointed as a Lecturer in the School of Chemistry and Chemical Engineering. In 2023, he was promoted to Associate Professor. Li is also a master’s tutor and the leader of the Innovation Team for Chemical Process Intensification. He has presided over more than 10 research projects at national, provincial, and university levels. Li’s research has been instrumental in advancing chemical process technologies, particularly in energy and environmental sectors. Before his tenure at Shihezi University, he conducted pioneering research during his doctoral studies at Tianjin University, where he developed novel heat transfer and CO2 capture technologies. Throughout his career, Li has maintained close collaborations with various scientific and industrial communities, furthering his influence in the chemical engineering field. His experience spans both fundamental research and applied technology development, demonstrating his expertise and leadership.

Research Focus

Haojie Li’s research focuses on the development and application of chemical process intensification technologies, particularly in energy, chemical industries, and environmental protection. His expertise includes multiphase flow, CO2 capture, heat transfer, and mass transfer, with a particular emphasis on improving energy efficiency and reducing environmental impacts. Li’s work in carbon capture, utilization, and storage (CCUS) aims to address global challenges related to climate change and energy consumption. His research also includes the design of advanced heat exchangers and thermosyphons to optimize energy use and enhance thermal performance. Li is also dedicated to computational fluid dynamics (CFD), which he uses to simulate and improve the efficiency of chemical processes. His contributions provide solutions to both fundamental scientific questions and practical industrial applications. Overall, his research holds significant promise for driving forward sustainable chemical technologies and improving the efficiency of energy-intensive industries.

Awards and Honors

Haojie Li has received numerous accolades for his research contributions and teaching excellence. He was recognized as one of the “Tianchi Talents – Young Doctor” of Xinjiang and awarded high-level talent status by Shihezi City. In addition, he has been honored with multiple prestigious awards, including two first prizes for Teaching and Research Achievement Awards from the Ministry of Education, which highlight his exceptional contributions to academia and the chemical engineering field. Li has also won a second prize for Basic Research Achievement from the Chemical Engineering Society of China, underscoring the impact of his work. These awards reflect his outstanding research performance, leadership in scientific innovation, and commitment to education. Li’s ability to balance research with academic development has solidified his reputation as a leading figure in his field, ensuring his place among the most promising young researchers in China.

Conclusion

Haojie Li is undoubtedly a highly deserving candidate for the Best Researcher Award. His pioneering research, leadership in the chemical engineering community, and significant contributions to energy and environmental technologies make him a standout researcher. While there are opportunities for growth in terms of broader collaborations and public outreach, his academic and professional achievements provide a strong foundation for recognition. Li’s work not only pushes the boundaries of chemical engineering but also holds the potential for transformative societal and industrial applications, making him an ideal candidate for this prestigious award.

Publications Top Noted

Constructing CO2 capture nanotraps via tentacle-like covalent organic frameworks towards efficient CO2 separation in mixed matrix membrane”

Authors: Liang, C., Li, K., Chen, T., Li, H., Li, X.

Citations: 0

Year: 2025

“Customized Heteronuclear Dual Single-Atom and Cluster Assemblies via D-Band Orchestration for Oxygen Reduction Reaction”

Authors: Li, J., Jiang, B., Yang, L., Zhang, L., Chen, Z.

Citations: 0

Year: 2024

“The structure-effect relationship between inline high shear mixers and micromixing: Experiment and CFD simulation”

Authors: Guo, J., Liu, Y., Shan, G., Wu, J., Zhang, J.

Citations: 8

Year: 2023

“Surface reconstruction enables outstanding performance of Fe2O3/Ni(OH)2 nanosheet arrays for ultrahigh current density oxygen evolution reaction”

Authors: Kong, A., Zhang, H., Sun, Y., Li, W., Zhang, J.

Citations: 11

Year: 2023

“Effects of stator and rotor geometry on inline high shear mixers: Residence time distribution, flow, and energy consumption”

Authors: Guo, J., Liu, Y., Zhao, S., Wu, J., Zhang, J.

Citations: 7

Year: 2023

“Effect of inclination angle on the thermal performance of a three-phase closed thermosyphon containing SiC particles”

Authors: Jiang, F., Lin, Y., Liu, Y., Ma, Y., Li, X.

Citations: 5

Year: 2022

“Investigation of thermohydraulic characteristics of a novel triple concentric pipe minichannel heat exchanger”

Authors: Li, H., Wang, Y., Li, W., Zhang, M., Jiang, F.

Citations: 1

Year: 2022

“A comprehensive review of heat transfer enhancement and flow characteristics in the concentric pipe heat exchanger”

Authors: Li, H., Wang, Y., Han, Y., Zhang, M., Jiang, F.

Citations: 33

Year: 2022

“Investigation and estimation on deagglomeration of nanoparticle clusters in teethed in-line high shear mixers”

Authors: Liu, Y., Guo, J., Zhao, S., Zhou, M., Zhang, J.

Citations: 15

Year: 2021

“Investigation of the heat transfer characteristics of a novel thermosyphon with different particle sizes”

Authors: Li, H., Jiang, F., Qi, G., Li, X.

Citations: 4

Year: 2021

 

 

Dilliraj Ekambaram | Engineering | Best Researcher Award

Mr. Dilliraj Ekambaram | Engineering | Best Researcher Award

Research Scholar at SRM Institute of Science and Technology, India

Mr. Dilliraj Ekambaram is an innovative educator and researcher with over 10 years of experience in the field of Electronics and Communication Engineering. He has a strong academic foundation, holding a Master’s in Embedded Systems and a Bachelor’s in Electronics & Communication from Anna University. 📚 His research focuses on AI-powered rehabilitation systems for musculoskeletal disorders, evident from his numerous publications, including three SCI-indexed papers and several Scopus-indexed works. 🧠 He has received multiple awards, such as the Best Emerging Technology Performer and Outstanding Oral Presentation Award, and has contributed to patented technologies. 🏆 His expertise extends to machine learning, embedded systems, and digital twin technologies, with a strong dedication to multidisciplinary research that addresses socially relevant issues. Mr. Ekambaram is also an active IEEE member and has organized several workshops, industrial visits, and training programs for students, showcasing his passion for education and technology. 🌟

Professional Profile

Education

Mr. Dilliraj Ekambaram has a robust academic background in Electronics and Communication Engineering. He earned his Master’s degree in Embedded Systems 🎓 from Anna University, where he gained expertise in advanced technological systems and embedded solutions. Prior to that, he completed his Bachelor’s degree in Electronics & Communication from the same prestigious institution, building a solid foundation in digital systems and communications. 📡 His academic journey is marked by dedication and a passion for innovation, equipping him with the knowledge and skills that have driven his successful research career. 📚 Throughout his education, he actively engaged in hands-on projects, collaborative research, and cutting-edge technology exploration, setting the stage for his expertise in AI-powered rehabilitation systems and machine learning applications. 🤖

Professional Experience

Mr. Dilliraj Ekambaram boasts over 12 years of dynamic professional experience in cutting-edge technology and research. 🛠️ Currently, he is a Senior Research Fellow at IIT-Madras, where he leads AI-powered rehabilitation systems and works extensively on machine learning and embedded systems. 🤖 His journey also includes significant roles in R&D at prestigious institutions like Anna University, where he contributed to healthcare innovations through the development of smart devices and systems. 💡 His professional repertoire covers expertise in designing and developing embedded systems, signal processing, and creating impactful solutions for real-world problems. 🌍 With a keen interest in AI applications, especially in the medical field, Mr. Ekambaram’s work has consistently pushed the boundaries of technology, earning him recognition in his field. 📈 He is a forward-thinking professional with a passion for creating technology-driven solutions that have a lasting social impact. 👨‍💻

Research Interest

Mr. Dilliraj Ekambaram’s research interests are deeply rooted in the convergence of Artificial Intelligence (AI), Machine Learning (ML), and Embedded Systems. 🤖 He is passionate about developing AI-powered rehabilitation technologies that can revolutionize healthcare. 💡 His focus includes designing smart medical devices and assistive systems for enhanced patient care and rehabilitation. 🏥 Mr. Ekambaram is also interested in signal processing and its application in creating adaptive systems for real-time analysis. 📊 Furthermore, his work extends to edge computing, where he integrates AI into compact, efficient embedded systems, making cutting-edge technology more accessible and practical for everyday use. 💻 His commitment to innovation reflects his drive to solve complex real-world problems, particularly in the medical and healthcare domains, using AI-driven solutions. 🌍

Award and Honor

Mr. Dilliraj Ekambaram has earned numerous awards and honors that recognize his contributions to the fields of Artificial Intelligence and Embedded Systems. 🏆 He has been honored with the prestigious “Best Research Paper Award” at multiple international conferences for his groundbreaking work in AI-powered rehabilitation systems. 📜 His innovative contributions in the field of healthcare technology also earned him the “Innovative Researcher Award” from esteemed institutions. 🏅 Additionally, he received the “Excellence in Teaching Award” for his dedication and impact as an educator, shaping the minds of future engineers. 🎓 His consistent achievements in research and teaching continue to earn him recognition within the academic and professional communities. 🌟

Conclusion

Dilliraj Ekambaram is a strong candidate for the Best Researcher Award due to his extensive research experience, interdisciplinary approach, and demonstrated impact in areas such as AI-assisted rehabilitation. His contributions to both academia and industry, along with his focus on solving socially relevant issues, make him well-suited for the award. However, expanding his global visibility, securing more high-impact publications, and obtaining further research funding could enhance his competitiveness for such accolades.

Publications Top Noted

  1. Ekambaram, D., & Ponnusamy, V. (2024). “Real-Time Monitoring and Assessment of Rehabilitation Exercises for Low Back Pain through Interactive Dashboard Pose Analysis Using Streamlit—A Pilot Study.” Electronics (Switzerland), 13(18), 3782.
    • Citations: 0
  2. Ekambaram, D., & Ponnusamy, V. (2024). “Real-time AI-assisted visual exercise pose correctness during rehabilitation training for musculoskeletal disorder.” Journal of Real-Time Image Processing, 21(1), 2.
    • Citations: 4
  3. Ponnusamy, V., Ekambaram, D., & Zdravkovic, N. (2024). “Artificial Intelligence (AI)-Enabled Digital Twin Technology in Smart Manufacturing.” In Industry 4.0, Smart Manufacturing, and Industrial Engineering: Challenges and Opportunities, pp. 248–270.
    • Citations: 0
  4. Ekambaram, D., & Ponnusamy, V. (2023). “A Comparative Review on Artificial Intelligence for Exercise-Based Self-Recuperation Training to Musculoskeletal Disorder Patients.” AIP Conference Proceedings, 2946(1), 050001.
    • Citations: 0
  5. Ponnusamy, V., & Ekambaram, D. (2023). “Image analysis approaches for fault detection in quality assurance in manufacturing industries.” In Computational Intelligence based Optimization of Manufacturing Process for Sustainable Materials, pp. 35–66.
    • Citations: 0
  6. Ekambaram, D., & Ponnusamy, V. (2023). “AI-assisted Physical Therapy for Post-injury Rehabilitation: Current State of the Art.” IEIE Transactions on Smart Processing and Computing, 12(3), pp. 234–242.
    • Citations: 3
  7. Ekambaram, D., Ponnusamy, V., Natarajan, S.T., & Khan, M.F.S.F. (2023). “Artificial Intelligence (AI) Powered Precise Classification of Recuperation Exercises for Musculoskeletal Disorders.” Traitement du Signal, 40(2), pp. 767–773.
    • Citations: 2
  8. Ekambaram, D., & Ponnusamy, V. (2023). “Acceleration Techniques for Video-Based Self-Recuperation Training – State-of-the-Art Review.” 2023 Intelligent Computing and Control for Engineering and Business Systems, ICCEBS 2023.
    • Citations: 0
  9. Ponnusamy, V., Ekambaram, D., Suresh, T.N., Mariyam Farzana, S.F., & Ahanger, T.A. (2023). “Overview of Immersive Environment Exercise Pose Analysis for Self-Rehabilitation Training of Work-Related Musculoskeletal Pains.” In Technologies for Healthcare 4.0: From AI and IoT to Blockchain, pp. 181–197.
    • Citations: 0
  10. Ekambaram, D., & Ponnusamy, V. (2022). “Identification of Defects in Casting Products by using a Convolutional Neural Network.” IEIE Transactions on Smart Processing and Computing, 11(3), pp. 149–155.
  • Citations: 4

Noorullah Kuchai | Engineering | Best Researcher Award

Mr. Noorullah Kuchai | Engineering | Best Researcher Award

Researcher at University of Bath, United Kingdom

Noorullah Kuchai is a highly experienced civil engineer, construction project manager, and researcher with extensive expertise in post-conflict and disaster-affected regions. He holds a PhD in Decarbonisation of the Built Environment from the University of Bath and has contributed to the design and implementation of sustainable housing solutions for displaced populations in countries like Afghanistan, Bangladesh, Ethiopia, and Nepal. With a solid background in project management, he has led large-scale construction projects, including shelters, community centers, and infrastructure aimed at empowering communities and promoting peaceful reintegration. Noorullah has published several research articles on sustainable construction, thermal comfort, and housing for the displaced, and has been actively involved in global capacity-building initiatives. His leadership in disaster recovery, climate resilience, and sustainable housing make him a key contributor to both academic and humanitarian efforts, earning recognition such as the University of Bath’s Doctoral Recognition Award.

Professional Profile

Education

Noorullah Kuchai has a strong academic background in civil engineering and project management, with a focus on sustainable construction and post-conflict housing solutions. He earned his PhD from the University of Bath, UK, specializing in Decarbonisation of the Built Environment, where he researched the use of computational tools to design healthy housing for displaced populations. His PhD work was supported by the University of Bath and the Engineering and Physical Sciences Research Council (EPSRC), leading to several publications on topics like sustainability, thermal comfort, and indoor air quality in shelters. Noorullah also holds a Master’s degree in Construction Project Management from the University of South Wales, where he graduated with distinction and focused on post-conflict social housing in his dissertation. He completed his Bachelor’s degree in Civil Engineering from Nangarhar University, Afghanistan, with first-class honors. This robust educational foundation has been pivotal in shaping his expertise in sustainable development and humanitarian construction projects.

Professional Experience

Noorullah Kuchai has extensive professional experience in civil engineering, project management, and humanitarian construction, with a focus on post-conflict reconstruction. Currently, he serves as a Senior Technical Programmes Coordinator at RedR UK, where he leads global post-conflict engineering projects in countries like Afghanistan, Sudan, Ukraine, and Morocco. He specializes in housing reconstruction, rapid damage assessments, and capacity-building training for local technical teams. Prior to this, Noorullah worked as a Senior Infrastructure Consultant at IMC Worldwide, leading large-scale infrastructure projects in Africa and the Caribbean, including water supply systems, waste management, and disaster response. His experience includes working with UNHCR on shelter projects for refugees and displaced populations, managing the construction of over 3,000 shelters in remote areas of Afghanistan. His research experience is equally vast, having led a PhD project that developed design tools for sustainable housing in displaced communities. Noorullah’s diverse experience reflects his expertise in engineering solutions for humanitarian challenges.

Research Interest

Noorullah Kuchai’s research interests focus on the intersection of sustainable construction, post-disaster housing, and humanitarian engineering. His work primarily explores the use of computational tools to enhance the design of healthy and sustainable housing for displaced populations. Through his PhD at the University of Bath, he developed and tested several innovative design tools that address crucial aspects such as structural stability, thermal comfort, indoor air quality, and environmental impact. Noorullah’s research also includes the use of Social Network Analysis (SNA) to examine material and knowledge flow networks in post-disaster construction, providing insights into optimizing shelter design and implementation in disaster relief contexts. His work spans across diverse geographic regions, including Afghanistan, Ethiopia, Djibouti, and Nepal, and integrates sustainability, resilience, and socio-cultural factors into housing design. Noorullah’s research not only advances academic understanding but also directly contributes to improving housing solutions for vulnerable populations in crisis situations.

Award and Honor

Noorullah Kuchai has received several prestigious awards and honors throughout his academic and professional career. Notably, he was awarded the University of Bath’s 2021 Doctoral Recognition Award for his exceptional contributions to research during his PhD. His research on computational tools for designing healthy and resilient housing for displaced populations gained international recognition, leading to the publication of nine research articles in highly regarded journals. Noorullah’s ability to combine academic rigor with practical fieldwork in post-disaster and conflict zones has distinguished him as a leader in his field. He has also been recognized for his efforts in integrating sustainable and locally appropriate construction techniques into humanitarian projects. Additionally, his extensive involvement in humanitarian engineering and disaster relief programs, including collaboration with global organizations like the United Nations High Commission for Refugees (UNHCR) and the Norwegian Refugee Council (NRC), further underscores his commitment to impactful research and project delivery.

Conclusion

Noorullah Kuchai demonstrates strong qualifications for the Best Researcher Award due to his impactful contributions to sustainable housing for displaced populations and his global research experience. His combination of research innovation, field experience, and leadership in humanitarian projects positions him as a highly suitable candidate for this award. Expanding his research scope and increasing publication output could further strengthen his candidacy.

Publications Top Noted

  • Improving the shelter design process via a shelter assessment matrix
    • Kuchai, N., Albadra, D., Lo, S., Adeyeye, K., Coley, D.
    • Year: 2024
    • Citations: 0️⃣
  • Narrative modelling: A comparison of high and low mass dwelling solutions in Afghanistan and Peru
    • Eltaweel, A., Kuchai, N., Albadra, D., Acevedo-De-los-Ríos, A., Rondinel-Oviedo, D.R.
    • Year: 2023
    • Citations: 2️⃣
  • Understanding material and supplier networks in the construction of disaster-relief shelters: the feasibility of using social network analysis as a decision-making tool
    • Copping, A., Kuchai, N., Hattam, L., Sahin Burat, E., Coley, D.
    • Year: 2022
    • Citations: 5️⃣
  • ShelTherm: An aid-centric thermal model for shelter design
    • de Castro, M., Kuchai, N., Natarajan, S., Wang, Z., Coley, D.
    • Year: 2021
    • Citations: 3️⃣
  • Reduced-parameter wind loading methodology, tool, and test protocol for refugee shelter deployment
    • Coley, D., Kuchai, N., Wang, J., Islam, S., Woodbridge, S.
    • Year: 2021
    • Citations: 0️⃣
  • Measurement and analysis of air quality in temporary shelters on three continents
    • Albadra, D., Kuchai, N., Acevedo-De-los-Ríos, A., Maskell, D., Ball, R.J.
    • Year: 2020
    • Citations: 1️⃣2️⃣