Khrystyna Lipianina-Honcharenko | Computer Science | Young Scientist Award

Dr. Khrystyna Lipianina-Honcharenko | Computer Science | Young Scientist Award

Associate professor, Ph.D. in information technologies at West Ukrainian National University, Ukraine

Khrystyna Lipianina-Honcharenko is a promising candidate for the Young Scientist Award due to her strong academic background and substantial contributions to research in information technology, machine learning, and socio-economic modeling. Holding a PhD in Technical Sciences and serving as an Associate Professor at the West Ukrainian National University, she has extensive experience in both teaching and research. Khrystyna is involved in high-impact international projects, such as TruScanAI and Erasmus+ initiatives, demonstrating her leadership and collaboration in cutting-edge technological advancements. Her research on data analysis, simulation, and machine learning positions her at the forefront of modern scientific inquiry. While her proficiency in English and publication presence are notable, further enhancement of her language skills and expanding her network in global research circles could increase her influence. Overall, Khrystyna’s innovative research and leadership make her a strong contender for the award, with significant potential for future contributions to the scientific community.

Professional Profile 

Education🎓

Khrystyna Lipianina-Honcharenko has an extensive educational background, primarily from West Ukrainian National University, where she has completed multiple degrees. She holds a Bachelor’s degree in Economic Cybernetics (2007–2011), followed by a Master’s in Information Technologies in Economics (2011–2012). Khrystyna continued her academic journey as a postgraduate student at the Department of Economic Cybernetics and Informatics, earning a PhD in Technical Sciences in Information Technology (2019). Her academic pursuits are ongoing, as she is currently working towards her Doctor of Technical Sciences degree in the Department of Information Computer Systems and Control at the same university, which she is expected to complete in 2025. Her education reflects a strong foundation in both the technical and economic aspects of information systems, further enhanced by her focus on machine learning and data analysis. This solid academic background has significantly contributed to her research and teaching expertise.

Professional Experience📝

Khrystyna Lipianina-Honcharenko has a rich professional experience in academia, primarily at West Ukrainian National University (WNU). She began her career as a Laboratory Assistant in the Department of Economic Cybernetics and Informatics from 2012 to 2014, where she gained foundational experience in research and teaching. Khrystyna then advanced to the role of Lecturer in the same department from 2013 to 2020, and later became a Senior Lecturer in the Department of Information Computer Systems and Control from 2020 to 2021. Her expertise was further recognized when she was promoted to Associate Professor in 2021, a position she holds currently. Throughout her career, Khrystyna has not only contributed to teaching but has also been actively involved in research, particularly in areas such as machine learning, data analysis, and socio-economic modeling. Her experience spans both academic instruction and hands-on involvement in high-impact international research projects, highlighting her leadership and expertise.

Research Interest🔎

Khrystyna Lipianina-Honcharenko’s research interests lie at the intersection of information technology, machine learning, and socio-economic modeling. She is particularly focused on data analysis, simulation, and the application of artificial intelligence methods in cyber-physical systems. Her work explores the use of machine learning techniques to model and forecast socio-economic processes, aiming to improve decision-making in various fields, including economics and technology. Khrystyna has also contributed to innovative projects like TruScanAI, which uses AI to detect fake information, and Auralisation of Acoustic Heritage Sites, which combines augmented and virtual reality to preserve cultural heritage. Her research interests extend to structural and statistical identification of hierarchical objects, as well as the development of tools for analyzing complex systems. Through these endeavors, Khrystyna seeks to advance the integration of technology and data-driven methods in solving real-world challenges, particularly in the context of socio-economic systems and information technologies.

Award and Honor🏆

Khrystyna Lipianina-Honcharenko has been recognized for her significant contributions to research and education, particularly in the fields of information technology and machine learning. While specific awards and honors are not detailed in the available information, her involvement in prestigious international projects such as Erasmus+ and her participation in high-impact research initiatives like TruScanAI and Auralisation of Acoustic Heritage Sites underscore her academic and professional recognition. These projects highlight her leadership and innovation, earning her respect within the academic community. Additionally, her active role in the Erasmus+ KA2 Work4CE program demonstrates her commitment to advancing higher education and interdisciplinary collaboration. Khrystyna’s extensive publication record and contributions to scientific advancements further demonstrate her growing influence in her field. As she continues to contribute to international collaborations and projects, it is likely that her efforts will lead to more formal recognitions and awards, further solidifying her place as a leader in her research domain.

Research Skill🔬

Khrystyna Lipianina-Honcharenko possesses a diverse and robust set of research skills, particularly in the areas of data analysis, machine learning, and modeling of socio-economic processes. She is proficient in programming languages such as R and Python, which are essential for data processing, algorithm development, and machine learning applications. Her expertise extends to using various application packages like MS Excel, Mathcad, AnyLogic, and GeoDa, allowing her to model complex systems and analyze large datasets effectively. Khrystyna is well-versed in both qualitative and quantitative research methodologies, including structural and statistical identification of hierarchical objects, a skill she applied in projects related to cyber-physical systems. Her ability to combine technical knowledge with socio-economic modeling enables her to tackle interdisciplinary research challenges. Moreover, her involvement in international projects showcases her capacity for collaborative, cross-cultural research, further enhancing her adaptability and competence in applying advanced research techniques in diverse contexts.

Conclusion💡

Khrystyna Lipianina-Honcharenko is a strong candidate for the Young Scientist Award, thanks to her academic accomplishments, innovative research projects, and leadership in international collaborations. Her dedication to the field of information technology, machine learning, and socio-economic modeling positions her as an emerging scientist with significant potential for future contributions. With continued professional development in areas such as language proficiency and broader networking, Khrystyna could enhance her impact and further distinguish herself in her field.

Publications Top Noted✍️

  • Title: Decision tree based targeting model of customer interaction with business page
    Authors: H Lipyanina, A Sachenko, T Lendyuk, S Nadvynychny, S Grodskyi
    Year: 2020
    Citations: 37

  • Title: Economic Crime Detection Using Support Vector Machine Classification
    Authors: A Krysovatyy, H Lipyanina-Goncharenko, S Sachenko, O Desyatnyuk
    Year: 2021
    Citations: 25

  • Title: Assessing the investment risk of virtual IT company based on machine learning
    Authors: H Lipyanina, V Maksymovych, A Sachenko, T Lendyuk, A Fomenko, I Kit
    Year: 2020
    Citations: 24

  • Title: Targeting Model of HEI Video Marketing based on Classification Tree
    Authors: H Lipyanina, S Sachenko, T Lendyuk, A Sachenko
    Year: 2020
    Citations: 22

  • Title: Concept of the intelligent guide with AR support
    Authors: K Lipianina-Honcharenko, R Savchyshyn, A Sachenko, A Chaban, I Kit
    Year: 2022
    Citations: 19

  • Title: Intelligent Method of a Competitive Product Choosing based on the Emotional Feedbacks Coloring
    Authors: R Gramyak, H Lipyanina-Goncharenko, A Sachenko, T Lendyuk
    Year: 2021
    Citations: 19

  • Title: Method of detecting a fictitious company on the machine learning base
    Authors: H Lipyanina, S Sachenko, T Lendyuk, V Brych, V Yatskiv, O Osolinskiy
    Year: 2021
    Citations: 17

  • Title: Multiple regression method for analyzing the tourist demand considering the influence factors
    Authors: V Krylov, A Sachenko, P Strubytskyi, D Lendiuk, H Lipyanina
    Year: 2019
    Citations: 13

  • Title: Recognizing the Fictitious Business Entity on Logistic Regression Base
    Authors: A Krysovatyy, K Lipianina-Honcharenko, S Sachenko, O Desyatnyuk
    Year: 2022
    Citations: 9

  • Title: Сучасні інформаційні технології
    Authors: ОВ Вовкодав, ХВ Ліп’яніна
    Year: 2017
    Citations: 9

  • Title: Classification Method of Fictitious Enterprises Based on Gaussian Naive Bayes
    Authors: A Krysovatyy, H Lipyanina-Goncharenko, O Desyatnyuk, S Sachenko
    Year: 2021
    Citations: 8

  • Title: Intelligent information system for product promotion in internet market
    Authors: K Lipianina-Honcharenko, C Wolff, A Sachenko, O Desyatnyuk
    Year: 2023
    Citations: 7

  • Title: An intelligent method for forming the advertising content of higher education institutions based on semantic analysis
    Authors: K Lipianina-Honcharenko, T Lendiuk, A Sachenko, O Osolinskyi
    Year: 2021
    Citations: 7

  • Title: Intelligent waste-volume management method in the smart city concept
    Authors: K Lipianina-Honcharenko, M Komar, O Osolinskyi, V Shymanskyi
    Year: 2023
    Citations: 6

  • Title: Intelligent method for classifying the level of anthropogenic disasters
    Authors: K Lipianina-Honcharenko, C Wolff, A Sachenko, I Kit, D Zahorodnia
    Year: 2023
    Citations: 6

Xiang Li | Computer Science | Best Researcher Award

Ms. Xiang Li | Computer Science | Best Researcher Award

PHD candidate at University of Chinese Academy of Sciences, China

Xiang Li, a Ph.D. candidate at the University of Chinese Academy of Sciences, demonstrates exceptional potential for the Best Researcher Award. With a solid academic foundation—ranking in the top 5–7% throughout his studies—he has excelled in areas such as deep learning, stochastic processes, and pattern recognition. His research focuses on cross-domain few-shot learning, addressing real-world challenges like medical lesion detection and remote sensing scene classification. He has published in the prestigious Knowledge-Based Systems journal and submitted another to IEEE Transactions on Geoscience and Remote Sensing. Xiang has also earned accolades, including the Second Prize in the National Mathematical Modeling Competition and a top-tier finish in the Huawei Software Elite Challenge. His future interests in class-incremental learning and prompt tuning highlight a clear vision for impactful research. Overall, Xiang Li’s innovative contributions, academic excellence, and commitment to advancing AI technologies make him a strong and deserving candidate for this recognition.

Professional Profile 

Education

Xiang Li has demonstrated outstanding academic performance throughout his educational journey. He earned his Bachelor’s degree in Information and Computer Science from Shandong University, graduating in July 2021 with an impressive GPA of 91.73/100, placing him in the top 7.46% of his class. His coursework included high-level subjects such as Mathematical Statistics, Operations Research, and Advanced Algebra, in which he consistently achieved top scores. Following this, he was admitted to the University of Chinese Academy of Sciences, where he completed foundational Ph.D. training from September 2021 to July 2022, ranking in the top 5% with a GPA of 87.13/100. His advanced studies covered critical areas like Matrix Analysis, Deep Learning, and Pattern Recognition. Currently, he is conducting doctoral research at the Institute of Optics and Electronics, Chinese Academy of Sciences, focusing on cross-domain few-shot learning. His educational background reflects strong technical competence and a solid foundation for innovative research.

Professional Experience

Xiang Li has accumulated valuable professional research experience during his Ph.D. studies at the Institute of Optics and Electronics, Chinese Academy of Sciences. His primary research focuses on cross-domain few-shot learning, a vital area in artificial intelligence that addresses challenges in data-scarce environments. He has led and contributed to key projects, including the development of a dynamic representation enhancement framework to improve model generalization across different domains, and the fine-tuning of general pre-trained models for few-shot remote sensing scene classification. In addition to research, Xiang has actively participated in national competitions, winning third prize in the Huawei Software Elite Challenge for designing a traffic scheduling plan and contributing to infrared small target detection strategies in another competition. These experiences highlight his strong technical problem-solving skills, teamwork, and ability to apply theoretical knowledge to real-world challenges. His professional work reflects both depth and versatility, positioning him as a highly capable and innovative young researcher.

Research Interest

Xiang Li’s research interests lie at the forefront of artificial intelligence, with a strong focus on cross-domain few-shot learning, computer vision, and representation learning. He is particularly interested in developing algorithms that enable models to perform effectively in data-scarce scenarios, addressing the challenges posed by domain shifts and limited labeled data. His current work involves enhancing the representational capacity of models to learn diverse and meaningful features across domains, with applications in medical image analysis and remote sensing. Xiang is also exploring techniques for fine-tuning general pre-trained models to adapt to new tasks without extensive retraining. Looking ahead, he is keen on advancing research in few-shot class-incremental learning, where models continuously adapt to new classes with minimal data, and in prompt tuning for vision-language pre-trained models, which integrates natural language processing with visual recognition. His interests reflect a forward-thinking approach to building intelligent systems capable of learning efficiently and generalizing across tasks.

Award and Honor

Xiang Li has received several prestigious awards and honors in recognition of his academic excellence and research capabilities. During his undergraduate and doctoral studies, he was consistently awarded scholarships from both Shandong University and the University of Chinese Academy of Sciences, reflecting his outstanding academic performance and dedication. In June 2022, he was named a Merit Student at the University of Chinese Academy of Sciences, an honor reserved for top-performing students. His strong analytical and problem-solving skills were further recognized in national competitions, where he earned the Second Prize in the National College Students’ Mathematical Modeling Competition in 2019. Additionally, he played a key role in a team that won third prize in the Huawei Software Elite Challenge, a highly competitive event involving over 300 teams. These honors highlight his ability to excel both academically and practically, reinforcing his position as a promising and accomplished young researcher in the field of computer science.

Research skill

Xiang Li possesses a strong set of research skills that make him a capable and innovative scholar in the field of artificial intelligence and computer vision. His expertise spans advanced areas such as cross-domain few-shot learning, deep learning, and representation learning. He demonstrates exceptional analytical abilities, evident in his design and implementation of dynamic representation frameworks to enhance model generalization across diverse domains. Xiang is proficient in applying theoretical concepts to practical problems, as seen in his work on fine-tuning pre-trained models for remote sensing scene classification. His skill set includes programming, algorithm development, statistical analysis, and critical thinking, which he has effectively applied in both solo research and collaborative projects. Furthermore, his ability to publish in top-tier journals, such as Knowledge-Based Systems, reflects his competence in scientific writing, experimental design, and result interpretation. These research skills enable him to tackle complex challenges and contribute meaningfully to the advancement of intelligent systems.

Conclusion

Xiang Li is a highly promising young researcher with a solid academic foundation, well-defined research focus, and impactful contributions in the field of computer vision and machine learning. His achievements in cross-domain few-shot learning, publication in a top-tier journal, and award-winning competition experience clearly demonstrate excellence in research and innovation.

Publications Top Noted

  • Title: RSGPT: A remote sensing vision language model and benchmark
    Authors: Y. Hu, Yuan; J. Yuan, Jianlong; C. Wen, Congcong; Y. Liu, Yu; X. Li, Xiang
    Year: 2025

  • Title: Uni3DL: A Unified Model for 3D Vision-Language Understanding
    Authors: X. Li, Xiang; J. Ding, Jian; Z. Chen, Zhaoyang; M. Elhoseiny, Mohamed
    Year: 2025 (Conference Paper)

  • Title: 3D Shape Contrastive Representation Learning With Adversarial Examples
    Authors: C. Wen, Congcong; X. Li, Xiang; H. Huang, Hao; Y.S. Liu, Yu Shen; Y. Fang, Yi
    Year: 2025
    Journal: IEEE Transactions on Multimedia
    Citations: 4

  • Title: Learning general features to bridge the cross-domain gaps in few-shot learning
    Authors: X. Li, Xiang; H. Luo, Hui; G. Zhou, Gaofan; M. Li, Meihui; Y. Liu, Yunfeng
    Year: 2024
    Journal: Knowledge-Based Systems
    Citations: 1

Hussain A. Younis | Computer Science | Best Researcher Award

Mr. Hussain A. Younis | Computer Science | Best Researcher Award

College of Education at University of Basrah, Iraq

Hussain A. Younis is a dedicated researcher specializing in Artificial Intelligence, Security, Digital Image Processing, and Robotics. With a strong academic background from India and Malaysia and an affiliation with the University of Basrah, he has published impactful research in high-ranking journals and IEEE conferences. His work demonstrates interdisciplinary expertise, particularly in AI applications, human-robot interaction, and digital security. As an active IEEE member and potential reviewer, he is engaged in professional research communities. While his contributions are commendable, completing his Ph.D., increasing Q1/Q2 journal publications, securing research grants, and enhancing international collaborations would further strengthen his research profile. His growing citation impact and involvement in digital transformation research make him a strong candidate for the Best Researcher Award. With continued contributions in leadership, industry collaborations, and high-impact research, Hussain A. Younis is well-positioned to make significant advancements in the field of computer science and engineering.

Professional Profile 

Education

Hussain A. Younis has a strong academic background in computer science, with a Master’s degree earned in 2012 from India and ongoing Ph.D. studies since 2019 in Malaysia. His educational journey reflects a commitment to advanced research in Artificial Intelligence, Security, Digital Image Processing, and Robotics. His affiliation with the University of Basrah further strengthens his academic and research foundation, allowing him to contribute significantly to the field. Throughout his studies, he has focused on interdisciplinary research, exploring innovative solutions in AI-driven security systems, pattern recognition, and human-robot interaction. His academic pursuits have been complemented by active participation in professional organizations like IEEE, where he is a member and a prospective reviewer. While his research credentials are impressive, completing his Ph.D. will further solidify his expertise and credibility. His educational background positions him as a promising researcher with the potential to make impactful contributions to the scientific community.

Professional Experience

Hussain A. Younis has extensive professional experience in research and academia, with a focus on Artificial Intelligence, Security, Digital Image Processing, and Robotics. He is affiliated with the University of Basrah, where he contributes to both teaching and research in computer science. His work spans various interdisciplinary areas, including AI-driven security systems, pattern recognition, and human-robot interaction. As an IEEE member, he actively participates in academic conferences and serves as a prospective reviewer, further demonstrating his engagement in the global research community. His publications in high-impact journals and IEEE conferences highlight his contributions to advancing technology, particularly in robotics education, cybersecurity, and digital transformation. While his professional experience is commendable, taking on leadership roles in research projects, securing grants, and fostering international collaborations would further enhance his impact. His commitment to innovation and academic excellence makes him a valuable contributor to the scientific and technological landscape.

Research Interest

Hussain A. Younis’s research interests lie at the intersection of Artificial Intelligence, Security, Digital Image Processing, Pattern Recognition, and Robotics. His work explores innovative AI-driven solutions for enhancing security, improving human-robot interaction, and advancing digital transformation. He is particularly interested in speech recognition models, robotics in education, and secure cryptographic systems, contributing to cutting-edge developments in these fields. His research also addresses challenges in cybersecurity, focusing on encryption techniques and stream cipher systems to enhance data protection. Additionally, he investigates distinguishable patterns in image processing, applying AI techniques to optimize pattern recognition for various applications. Through his active participation in IEEE conferences and high-impact journal publications, he continuously contributes to technological advancements. His interdisciplinary approach and commitment to innovation position him as a promising researcher in AI and security, with the potential to make significant contributions to both academic research and real-world applications.

Award and Honor

Hussain A. Younis has been recognized for his contributions to research in Artificial Intelligence, Security, Digital Image Processing, and Robotics through various academic achievements and honors. His publications in high-impact journals and IEEE conferences reflect his dedication to advancing knowledge in these fields. As an active IEEE member, he has gained recognition within the global research community and has been invited to serve as a reviewer for IEEE conferences in Iraq. His work on robotics in education, cybersecurity, and encryption systems has earned significant attention, highlighting his expertise in interdisciplinary research. While his achievements are commendable, securing prestigious research grants, international fellowships, and industry collaborations would further enhance his profile. His commitment to innovation and scientific excellence makes him a strong contender for research awards, and with continued contributions, he is poised to receive greater recognition for his impact on the technological and academic landscape.

Research Skill

Hussain A. Younis possesses strong research skills in Artificial Intelligence, Security, Digital Image Processing, Pattern Recognition, and Robotics. His expertise lies in developing AI-driven solutions for security, speech recognition, and human-robot interaction, showcasing his ability to integrate multiple disciplines. He is proficient in data analysis, algorithm development, cryptographic security, and digital transformation technologies, enabling him to conduct high-quality research with practical applications. His experience in publishing in high-impact journals and IEEE conferences reflects his ability to conduct rigorous academic research and communicate findings effectively. As an active IEEE member and prospective reviewer, he demonstrates critical analysis and evaluation skills essential for scholarly contributions. Additionally, his research involves problem-solving, programming, and system design, particularly in robotics education and cybersecurity. To further enhance his research impact, focusing on international collaborations, advanced machine learning techniques, and securing research grants would strengthen his expertise and academic contributions.

Conclusion

Hussain A. Younis demonstrates strong research potential with impactful publications in AI, Robotics, and Security. His IEEE membership, interdisciplinary research, and international exposure make him a strong candidate for the Best Researcher Award. However, completing the Ph.D., increasing high-impact publications, and engaging in leadership roles would significantly enhance his eligibility for this prestigious award.

Publications Top Noted

  1. Hussain A. Younis, TAE Eisa, M Nasser, TM Sahib, AA Noor, OM Alyasiri, … (2024)

    • A systematic review and meta-analysis of artificial intelligence tools in medicine and healthcare: applications, considerations, limitations, motivation and challenges
    • Citations: 114
  2. Hussain A. Younis, NIR Ruhaiyem, W Ghaban, NA Gazem, M Nasser (2023)

    • A systematic literature review on the applications of robots and natural language processing in education
    • Citations: 48
  3. IM Hayder, TA Al-Amiedy, W Ghaban, F Saeed, M Nasser, GA Al-Ali, HA Younis, … (2023)

    • An intelligent early flood forecasting and prediction leveraging machine and deep learning algorithms with advanced alert system
    • Citations: 40
  4. OM Alyasiri, K Selvaraj, Hussain A. Younis, TM Sahib, MF Almasoodi, IM Hayder (2024)

    • A survey on the potential of artificial intelligence tools in tourism information services
    • Citations: 38
  5. S Salisu, NIR Ruhaiyem, TAE Eisa, M Nasser, F Saeed, HA Younis (2023)

    • Motion capture technologies for ergonomics: A systematic literature review
    • Citations: 25
  6. IM Hayder, GANA Ali, Hussain A. Younis (2023)

    • Predicting reaction based on customer’s transaction using machine learning approaches
    • Citations: 20
  7. Hussain A. Younis, ASA Mohamed, R Jamaludin, MNA Wahab (2021)

    • Survey of robotics in education, taxonomy, applications, and platforms during COVID-19
    • Citations: 20
  8. OM Alyasiri, AM Salman, S Salisu (2024)

    • ChatGPT revisited: Using ChatGPT-4 for finding references and editing language in medical scientific articles
    • Citations: 18
  9. Hussain A. Younis, OM Alyasiri, Muthmainnah, TM Sahib, IM Hayder, S Salisu, … (2023)

    • ChatGPT Evaluation: Can It Replace Grammarly and Quillbot Tools
    • Citations: 16
  10. MA Hussain, Hussain A. Younis, Iznan H. Hasbullah, Ghofran Kh. Shraida, Hameed A … (2023)

  • An Efficient Color-Image Encryption Method Using DNA Sequence and Chaos Cipher
  • Citations: 14
  1. Hussain A. Younis, ASA Mohamed, MN Ab Wahab, R Jamaludin, S Salisu (2021)
  • A new speech recognition model in a human-robot interaction scenario using NAO robot: Proposal and preliminary model
  • Citations: 11
  1. Hussain A. Younis, TY Abdalla, AY Abdalla (2009)
  • Vector quantization techniques for partial encryption of wavelet-based compressed digital images
  • Citations: 11

Fengyu Liu | Computer Science | Best Researcher Award

Dr. Fengyu Liu | Computer Science | Best Researcher Award

PhD candidate at Southeast University, China

Fengyu Liu is a dedicated researcher specializing in deep learning, integrated navigation, intelligent unmanned systems, multi-sensor fusion, and SLAM (Simultaneous Localization and Mapping). He has authored 10 academic papers, including 5 SCI-indexed Q1 journal articles, and has contributed significantly to the fields of robotics and sensor technology. With 5 domestic invention patents and 1 PCT patent, his work demonstrates a strong focus on innovation. He has received numerous awards, including the National Scholarship and the Southeast University ‘Zhishan’ Scholarship, and has won four national and provincial-level first prizes in student competitions. He actively participates in academic conferences and serves as a reviewer for IEEE TIM, IEEE Sensor Journal, and MST journals. His research contributions and leadership in the academic community make him a promising figure in the field of intelligent navigation and robotics.

Professional Profile

Education

Fengyu Liu earned his B.S. degree in Electronic Science and Technology from the School of Instrument and Electronics, North University of China, in 2020. Currently, he is pursuing a Ph.D. in Instrument Science and Technology at the School of Instrument Science and Engineering, Southeast University, Nanjing, China. His doctoral research focuses on deep learning-driven navigation, SLAM, and multi-sensor fusion for intelligent unmanned systems. Throughout his academic journey, he has been recognized for his outstanding performance, receiving prestigious scholarships and awards for academic excellence and research contributions.

Professional Experience

During his undergraduate studies, Fengyu Liu served as the Chair of the Embedded Laboratory at the Innovation Elite Research Institute, where he led multiple student research projects. He has been actively involved in presenting at international conferences, including the 2023 International Conference on Robotics, Control, and Vision Engineering (Tokyo) and the China-Russia “Navigation and Motion Control” Youth Forum (2024, Nanjing). His research findings have been published in top-tier journals, and he has contributed as a reviewer for leading IEEE journals. His expertise in SLAM, sensor fusion, and AI-driven navigation technologies has led to patents and real-world applications, making him a key contributor to the advancement of autonomous systems and intelligent robotics.

Research Interests

Fengyu Liu’s research focuses on deep learning, integrated navigation, intelligent unmanned systems, multi-sensor fusion, and simultaneous localization and mapping (SLAM). His work explores advanced sensor fusion techniques, including the integration of LiDAR, cameras, inertial measurement units (IMUs), and deep learning models to enhance navigation accuracy and autonomy in complex environments. He is particularly interested in developing robust localization algorithms for dynamic and unstructured environments, with applications in robotics, autonomous vehicles, and aerospace navigation. His contributions to AI-driven SLAM and vision-based perception systems aim to improve real-time mapping, object recognition, and motion estimation for next-generation autonomous systems.

Awards and Honors

Fengyu Liu has received multiple prestigious awards, including the National Scholarship and the Southeast University ‘Zhishan’ Scholarship, recognizing his academic excellence. He has won four first prizes at national and provincial-level university student competitions, demonstrating his problem-solving skills and technical expertise. His research has also been recognized at academic conferences, earning him the Outstanding Paper Award at the 2022 Science and Technology Workers Seminar of the Chinese Society of Inertial Technology. His participation in international research forums, such as the China-Russia “Navigation and Motion Control” Youth Forum (2024, Nanjing), further highlights his growing impact in the field.

Research Skills

Fengyu Liu possesses a diverse skill set in deep learning, computer vision, and multi-sensor data fusion, particularly for robotics and autonomous navigation. He is proficient in developing AI-based SLAM algorithms, sensor calibration techniques, and real-time embedded system implementations. His expertise extends to software tools and programming languages, including Python, MATLAB, C++, TensorFlow, and PyTorch, which he utilizes for machine learning and signal processing applications. He has hands-on experience with robotic perception systems, LiDAR-based mapping, and inertial navigation technologies, contributing to multiple high-impact research projects. Additionally, his role as a peer reviewer for IEEE TIM, IEEE Sensor Journal, and MST journals reflects his strong analytical and critical evaluation skills in cutting-edge research.

Conclusion

Fengyu Liu is a highly promising young researcher with strong academic contributions, patents, and international recognition. His research in SLAM, deep learning, and multi-sensor fusion aligns with cutting-edge advancements in robotics and AI. His leadership roles, awards, and editorial responsibilities further strengthen his profile.

For the Best Researcher Award, he is a strong candidate, but additional international collaborations, funded research projects, and industry partnerships could further enhance his competitiveness for top-tier global research awards.

Publications Top Noted

  • Confidence Factor Based Robust Localization Algorithm with Visual-Inertial-LiDAR Fusion in Underground Space

  • LiDAR-Aided Visual-Inertial Odometry Using Line and Plane Features for Ground Vehicles

    • Authors: Jianfeng Wu, Xianghong Cheng, Fengyu Liu, Xingbang Tang, Wengdong Gu
    • Year: 2025
    • DOI: 10.1109/TVT.2025.3527472
  • Spatial Feature Recognition and Layout Method Based on Improved CenterNet and LSTM Frameworks

  • Transformer-Based Local-to-Global LiDAR-Camera Targetless Calibration With Multiple Constraints

  • Spacecraft-DS: A Spacecraft Dataset for Key Components Detection and Segmentation via Hardware-in-the-Loop Capture

  • A Visual SLAM Method Assisted by IMU and Deep Learning in Indoor Dynamic Blurred Scenes

  • A Spatial Layout Method Based on Feature Encoding and GA-BiLSTM

  • Combination of Iterated Cubature Kalman Filter and Neural Networks for GPS/INS During GPS Outages

    • Authors: Fengyu Liu, Xiaohong Sun, Yufeng Xiong, Huang Haoqian, Xiao-ting Guo, Yu Zhang, Chong Shen
    • Year: 2019
    • DOI: 10.1063/1.5094559

Volodymyr Polishchuk | Computer Science | Best Researcher Award

Prof. Volodymyr Polishchuk | Computer Science | Best Researcher Award

Uzhhorod National University, Ukraine

Volodymyr Polishchuk is a distinguished academic specializing in information technology, fuzzy systems, and decision-making models. Currently serving as a Professor at both Uzhhorod National University in Ukraine and the Technical University of Košice in Slovakia, he has made significant contributions to the fields of artificial intelligence, risk assessment, and sustainable tourism. With a career spanning over a decade, he has co-authored numerous publications, including journal articles and book chapters, focusing on the application of advanced decision models in various sectors. His research is internationally recognized, and he is an active member of several academic networks. He is known for his interdisciplinary approach, bridging information technology with real-world challenges such as healthcare, aviation education, and urban development.

Professional Profile 

Education

Volodymyr Polishchuk holds a prestigious Doctor of Sciences (DrSc.) degree from Uzhhorod National University, where he also completed his undergraduate and graduate education. His academic journey in information technology, mathematics, and fuzzy systems laid a strong foundation for his future research and teaching. As a professor at the university, he has guided numerous students and collaborated on innovative projects. Additionally, his academic credentials are complemented by his position at the Technical University of Košice in Slovakia, where he continues to contribute to cutting-edge research in his fields of expertise. His educational background supports his broad interdisciplinary approach, allowing him to address complex problems in various domains such as tourism, healthcare, and risk management.

Professional Experience

Professor Polishchuk has been a dedicated faculty member at Uzhhorod National University since 2011, where he teaches and conducts research at the Faculty of Information Technology. Over the years, he has gained recognition for his expertise in decision-making models and fuzzy systems. In addition to his role at Uzhhorod, he has been a professor at the Technical University of Košice, Slovakia. His professional experience extends beyond teaching, as he has collaborated on numerous international research projects and published widely in top-tier journals. He has also worked on hybrid decision models for risk assessment in sectors such as sustainable tourism, healthcare, and aviation education. His leadership in academic research has earned him recognition through various academic platforms, and he continues to actively engage with the global research community.

Research Interests

Volodymyr Polishchuk’s research primarily focuses on information technology, fuzzy systems, and decision-making models, with a particular emphasis on their practical applications across various industries. He is deeply engaged in developing hybrid models for evaluating complex processes, such as tourism sustainability, risk assessment, and healthcare outcomes. His work also explores the integration of artificial intelligence in decision-making, specifically in aviation education and urban development. Additionally, he is interested in the application of multicriteria decision analysis (MCDA) in solving real-world challenges. Polishchuk’s interdisciplinary approach allows him to connect cutting-edge technology with pressing global issues, contributing valuable insights to sectors like smart cities, start-up financing, and pandemic management. His research has significant implications for optimizing resource allocation, improving system efficiency, and mitigating risks in both public and private sectors.

Awards and Honors

Throughout his academic career, Volodymyr Polishchuk has earned several prestigious honors and recognition for his contributions to research and education. His interdisciplinary approach to problem-solving has led to numerous successful collaborations with leading academic and industry experts across Europe. He has been acknowledged by his peers for his innovative contributions to the fields of fuzzy logic, decision support systems, and sustainability models. Polishchuk’s research papers are widely cited, indicating the significant impact his work has had on the academic community. His exceptional leadership in research has also helped foster international collaborations, particularly in the development of sustainable tourism models and risk assessment frameworks for emerging sectors. His continued excellence in academia and research is further demonstrated by his involvement in high-impact projects and his active participation in global conferences.

Publications Top Noted

  1. Artificial Intelligence Technology for Assessing the Practical Knowledge of Air Traffic Controller Students Based on Their Responses in Multitasking Situations
    • Authors: Antoško, M., Polishchuk, V., Kelemen, M., Korniienko, A., Kelemen, M.
    • Year: 2025
    • Journal: Applied Sciences (Switzerland)
    • Volume: 15(1), 308
    • Citations: 0
  2. A large-scale decision-making model for the expediency of funding the development of tourism infrastructure in regions
    • Authors: Skare, M., Gavurova, B., Polishchuk, V.
    • Year: 2025
    • Journal: Expert Systems
    • Volume: 42(1), e13443
    • Citations: 1
  3. On Convergence of the Uniform Norm and Approximation for Stochastic Processes from the Space Fψ(Ω)
    • Authors: Rozora, I., Mlavets, Y., Vasylyk, O., Polishchuk, V.
    • Year: 2024
    • Journal: Journal of Theoretical Probability
    • Volume: 37(2), pp. 1627–1653
    • Citations: 0
  4. THE IMPACT OF DIGITAL DISINFORMATION ON QUALITY OF LIFE: A FUZZY MODEL ASSESSMENT
    • Authors: Gavurova, B., Moravec, V., Hynek, N., Petruzelka, B., Stastna, L.
    • Year: 2024
    • Journal: Technological and Economic Development of Economy
    • Volume: 30(4), pp. 1120–1145
    • Citations: 0
  5. An information-analytical system for assessing the level of automated news content according to the population structure – A platform for media literacy system development
    • Authors: Gavurova, B., Skare, M., Hynek, N., Moravec, V., Polishchuk, V.
    • Year: 2024
    • Journal: Technological Forecasting and Social Change
    • Volume: 200, 123161
    • Citations: 0
  6. Decision Support System Regarding the Possibility of Financing Cross-Border Cooperation Projects
    • Authors: Polishchuk, V., Kelemen, M., Polishchuk, I., Kelemen, M.
    • Year: 2024
    • Conference: CEUR Workshop Proceedings
    • Volume: 3702, pp. 58–71
    • Citations: 0
  7. Hybrid Mathematical Model of Risk Assessment of UAV Flights Over Airports
    • Authors: Polishchuk, V., Kelemen, M., Kelemen, M., Scerba, M.
    • Year: 2024
    • Conference: New Trends in Civil Aviation
    • Citations: 0
  8. A Fuzzy Multicriteria Model of Sustainable Tourism: Examples From the V4 Countries
    • Authors: Skare, M., Gavurova, B., Polishchuk, V.
    • Year: 2024
    • Journal: IEEE Transactions on Engineering Management
    • Volume: 71, pp. 12182–12193
    • Citations: 6
  9. Fuzzy multicriteria evaluation model of cross-border cooperation projects under resource curse conditions
    • Authors: Skare, M., Gavurova, B., Polishchuk, V.
    • Year: 2023
    • Journal: Resources Policy
    • Volume: 85, 103871
    • Citations: 3
  10. A fuzzy model for evaluating the level of satisfaction of tourists regarding accommodation establishments according to social class on the example of V4 countries
  • Authors: Skare, M., Gavurova, B., Polishchuk, V., Nawazish, M.
  • Year: 2023
  • Journal: Technological Forecasting and Social Change
  • Volume: 193, 122609
  • Citations: 7

Rajeev Ratna Vallabhuni | Computer Science | Young Scientist Award

Mr. Rajeev Ratna Vallabhuni | Computer Science | Young Scientist Award

Application Developer at Texans IT Services Inc., India

Rajeev Ratna Vallabhuni is an accomplished Application Developer with a rich background in computer science, technology, and engineering. He has contributed significantly to the field through several innovative patents in areas such as blockchain-based cloud applications, machine learning, and IoT security. His work spans various domains including AI/ML, image processing, and network management, with numerous research publications in international journals and conferences. With experience at Bayview Asset Management, LLC, he has a strong track record of applying cutting-edge technologies to real-world applications. His expertise in both academic and professional settings makes him a leading figure in the field of information technology and software development.

Professional Profile 

Education

Rajeev Ratna Vallabhuni holds a Master of Science in Information Technology Management from Campbellsville University, Kentucky, and a Master of Science in Computer Science Engineering from Northwestern Polytechnic University, California, USA. He also completed his Bachelor of Technology in Information and Technology at Vignan University, India. His educational foundation has equipped him with a diverse skill set, allowing him to specialize in software development, computer engineering, and cutting-edge technological innovations.

Professional Experience

Rajeev currently works as an Application Developer at Bayview Asset Management, LLC, where he plays a key role in developing and optimizing software applications. His previous professional experience includes working on various projects related to AI/ML, blockchain, and IoT security. He has contributed to numerous patents, book chapters, and international journal publications. Rajeev’s expertise spans both technical development and leadership, and his ability to integrate machine learning and deep learning techniques into practical solutions has made him a valuable asset in the tech industry.

Research Interest

Rajeev Ratna Vallabhuni’s research interests lie at the intersection of artificial intelligence, machine learning, cloud computing, and Internet of Things (IoT) technologies. His work primarily focuses on enhancing the security of IoT networks, leveraging blockchain for decentralized application architectures, and utilizing deep learning models for image and signal processing. Rajeev is also interested in exploring advanced computational methods for improving network management, resource allocation, and real-time data processing in cloud environments. His innovative research aims to develop scalable, efficient, and secure solutions for modern computing challenges, bridging the gap between theoretical algorithms and real-world applications.

Awards and Honors

Rajeev Ratna Vallabhuni has received numerous accolades for his contributions to the fields of software development, machine learning, and IoT security. Notable recognitions include multiple patents for his innovations in blockchain-based applications, AI/ML, and security systems. He has been awarded fellowships and scholarships during his academic career, showcasing his dedication to pushing the boundaries of technology. Additionally, Rajeev’s research has been published in prestigious international journals and recognized at numerous conferences, further cementing his reputation as a leading figure in his field.

Publications Top Noted

  • Smart cart shopping system with an RFID interface for human assistance
    Authors: RR Vallabhuni, S Lakshmanachari, G Avanthi, V Vijay
    Year: 2020
    Citation: 92
  • Performance analysis: D-Latch modules designed using 18nm FinFET Technology
    Authors: RR Vallabhuni, G Yamini, T Vinitha, SS Reddy
    Year: 2020
    Citation: 85
  • Disease prediction based retinal segmentation using bi-directional ConvLSTMU-Net
    Authors: BMS Rani, VR Ratna, VP Srinivasan, S Thenmalar, R Kanimozhi
    Year: 2021
    Citation: 68
  • ECG performance validation using operational transconductance amplifier with bias current
    Authors: V Vijay, CVSK Reddy, CS Pittala, RR Vallabhuni, M Saritha, M Lavanya, …
    Year: 2021
    Citation: 63
  • A Review On N-Bit Ripple-Carry Adder, Carry-Select Adder And Carry-Skip Adder
    Authors: V Vijay, M Sreevani, EM Rekha, K Moses, CS Pittala, KAS Shaik, …
    Year: 2022
    Citation: 62
  • Speech Emotion Recognition System With Librosa
    Authors: PA babu, VS Nagaraju, RR Vallabhuni
    Year: 2021
    Citation: 62
  • 6Transistor SRAM cell designed using 18nm FinFET technology
    Authors: RR Vallabhuni, P Shruthi, G Kavya, SS Chandana
    Year: 2020
    Citation: 60
  • Universal Shift Register Designed at Low Supply Voltages in 20nm FinFET Using Multiplexer
    Authors: RR Vallabhuni, J Sravana, CS Pittala, M Divya, BMS Rani, S Chikkapally, …
    Year: 2021
    Citation: 58
  • Numerical analysis of various plasmonic MIM/MDM slot waveguide structures
    Authors: CS Pittala, RR Vallabhuni, V Vijay, UR Anam, K Chaitanya
    Year: 2022
    Citation: 57
  • Design of Comparator using 18nm FinFET Technology for Analog to Digital Converters
    Authors: RR Vallabhuni, DVL Sravya, MS Shalini, GU Maheshwararao
    Year: 2020
    Citation: 55
  • High Speed Energy Efficient Multiplier Using 20nm FinFET Technology
    Authors: VR Ratna, S M, S N, V V, PC Shaker, D M, S Sadulla
    Year: 2021
    Citation: 53
  • Physically unclonable functions using two-level finite state machine
    Authors: V Vijay, K Chaitanya, CS Pittala, SS Susmitha, J Tanusha, …
    Year: 2022
    Citation: 48
  • Realization and comparative analysis of thermometer code based 4-bit encoder using 18 nm FinFET technology for analog to digital converters
    Authors: CS Pittala, V Parameswaran, M Srikanth, V Vijay, V Siva Nagaraju, …
    Year: 2021
    Citation: 45
  • Comparative validation of SRAM cells designed using 18nm FinFET for memory storing applications
    Authors: RR Vallabhuni, KC Koteswaramma, B Sadgurbabu, A Gowthamireddy
    Year: 2020
    Citation: 45

Naeem Ullah | Computer Science | Best Researcher Award

Mr. Naeem Ullah | Computer Science | Best Researcher Award

PhD Student at Software Engineering Research Group (SERG-UOM) University of Malakand, Pakistan

Mr. Naeem Ullah is a dedicated academic and researcher currently pursuing a PhD in Computer Science, with a focus on cybersecurity challenges in vehicle-to-vehicle communication from a software engineering perspective. Holding a strong academic record with a CGPA of 3.75/4.00, he has presented his research at international forums, such as the 2nd Annual International Workshop on Software Engineering, where he shared his Multivocal Literature Review (MLR) protocol on cybersecurity culture. Mr. Ullah has also received recognition for his teaching excellence, earning the Best Teacher Award in 2018. His work experience includes roles as a lecturer at the University Model College KPK, part-time tutor at Allama Iqbal Open University, and facilitator for continuous professional development programs for teachers. His research, currently under review, addresses crucial cybersecurity issues in vehicle-to-vehicle communications. Mr. Ullah’s commitment to furthering his knowledge is evident through multiple certifications in data science, networking, and cybersecurity.

Professional Profile 

Education

Mr. Naeem Ullah has a strong educational background in Computer Science. He is currently pursuing a PhD in Computer Science with a focus on cybersecurity challenges in vehicle-to-vehicle communication, maintaining an impressive CGPA of 3.75/4.00. His research aims to develop a mitigation model for cybersecurity issues in connected vehicle systems, reflecting his deep engagement with current technological challenges. Mr. Ullah completed his Master’s degree in Computer Science in 2019, achieving a CGPA of 3.7/4.00, with his thesis titled Software Development Process Improvement Model for Small Pakistani Software Development Companies. He also holds a Bachelor’s degree in Computer Science from 2014, with a CGPA of 3.62/4.00. His final year project, Auction Management System, showcased his ability to apply practical solutions to real-world problems. Mr. Ullah’s academic journey is marked by consistent excellence and a strong commitment to advancing his expertise in the field of computer science.

Professional Experience

Mr. Naeem Ullah has accumulated diverse professional experience in both academic and research roles. He has served as a Lecturer in Computer Science at the University Model College KPK, Peshawar, Pakistan, where he taught and mentored students in various computer science subjects. In addition, he has worked as a part-time tutor for Allama Iqbal Open University, Islamabad, since 2022, focusing on Information and Communication Technologies (ICT). Mr. Ullah has also contributed to teacher development programs, serving as a facilitator for the Continuous Professional Development (CPD) of Primary School Teachers (PSTs) through the Provincial Institute of Teacher Education (PITE) in KPK. His role as a part-time researcher at the Department of Computer Science and IT at the University of Malakand further underscores his involvement in academic research. Earlier in his career, he worked as a Secondary School Teacher at the Elementary and Secondary Education Department, KPK. His experiences reflect a blend of teaching, research, and educational development.

Research Interest

Mr. Naeem Ullah’s research interests primarily focus on cybersecurity, particularly in the context of emerging technologies such as vehicle-to-vehicle (V2V) communication. His PhD research investigates cybersecurity challenges and proposes mitigation models for securing V2V communication systems from a software engineering perspective. This area of research is highly relevant due to the increasing integration of connected vehicles and the need for secure communication protocols to protect sensitive data. Additionally, Mr. Ullah is interested in software engineering, with a particular emphasis on improving software development processes for small software companies in Pakistan, as demonstrated in his Master’s thesis. He has also contributed to the field of cybersecurity culture through his work on a Multivocal Literature Review (MLR) protocol, which identifies cybersecurity challenges and best practices in V2V communication. His research endeavors aim to address critical issues in both cybersecurity and software engineering, contributing to the development of safer, more efficient technologies.

Award and Honor

Mr. Naeem Ullah has received notable recognition for his academic and professional achievements. In 2022, he presented his Multivocal Literature Review (MLR) Protocol at the 2nd Annual International Workshop on Software Engineering (WSE-2022), organized by the Software Engineering Research Group at the University of Malakand. This presentation, focused on Cybersecurity Culture, showcased his expertise and contribution to the field of cybersecurity. Additionally, Mr. Ullah earned the prestigious Best Teacher Award from the Director of Elementary and Secondary Education, KPK, Pakistan, in 2018. This recognition highlights his excellence in teaching and his commitment to fostering the growth and development of his students. These awards and honors reflect Mr. Ullah’s dedication to advancing both his academic research and educational practices, demonstrating his commitment to the fields of computer science and cybersecurity while contributing positively to the educational community.

Conclusion

Naeem Ullah is a promising candidate for the Best Researcher Award, with a solid academic record, a focused and impactful research topic, and a commitment to both education and professional development. His strengths lie in his dedication to advancing cybersecurity research in emerging technologies like vehicle-to-vehicle communication and his capacity for leadership in educational initiatives. To further enhance his candidacy, Naeem could focus on increasing his research output, expanding his research scope, and engaging more in international collaborations to elevate the impact of his work.

Publications Top Noted

  • Title: Solutions to Cybersecurity Challenges in Secure Vehicle-to-Vehicle Communications: A Multivocal Literature Review
    Authors: Naeem Ullah, S.U. Khan, M. Niazi, A.A. Khan, J.A. Nasir
    Journal: Information and Software Technology
    Year: 2025
    Volume: 179
    Article ID: 107639
    Citations: 0
  • Title: Challenges and Their Practices in Adoption of Hybrid Cloud Computing: An Analytical Hierarchy Approach
    Authors: S.U. Khan, H.U. Khan, Naeem Ullah, R.A. Khan
    Journal: Security and Communication Networks
    Year: 2021
    Article ID: 1024139
    Citations: 2
  • Title: Internet of Things for Healthcare Using Effects of Mobile Computing: A Systematic Literature Review
    Authors: S. Nazir, Y. Ali, Naeem Ullah, I. García-Magariño
    Journal: Wireless Communications and Mobile Computing
    Year: 2019
    Article ID: 5931315
    Citations: 138
  • Title: Practices for Clients in the Adoption of Hybrid Cloud
    Authors: S.U. Khan, Naeem Ullah
    Journal: Proceedings of the Pakistan Academy of Sciences: Part A
    Year: 2017
    Volume: 54(1A)
    Pages: 13–32
    Citations: 3

Hossein Nematzadeh | Computer Science | Best Researcher Award

Dr. Hossein Nematzadeh | Computer Science | Best Researcher Award

Assist Prof at Universidad de Malaga, Spain

Dr. Hossein Nematzadeh is an accomplished researcher and academic with a Ph.D. in Computer Science from the University of Technology, Malaysia. He is currently an Assistant Professor at the Modern College of Business and Science in Oman, with prior experience as a researcher at Universidad de Málaga, Spain, and an assistant professor at Islamic Azad University, Iran. His research interests span Data Science, Artificial Intelligence, Cryptography, and Software Engineering, with a particular focus on explainable AI, feature selection, evolutionary algorithms, and image encryption. Dr. Nematzadeh has published extensively in high-impact journals, contributing to advancements in AI and machine learning. He is also an experienced educator, having taught a wide array of computer science courses at various academic levels. With expertise in technologies like Python, MATLAB, and AWS, he is committed to both advancing research and mentoring the next generation of computer scientists.

Professional Profile 

Education

Dr. Hossein Nematzadeh has a strong academic foundation in Computer Science, having completed his Ph.D. at the University of Technology, Malaysia in 2014. Prior to his doctoral studies, he earned his Master’s degree from the same institution in 2009, further solidifying his expertise in the field. Dr. Nematzadeh also holds a Bachelor’s degree from Mazandaran University of Science and Technology, obtained in 2007. His educational journey reflects a deep commitment to the study of computer science, particularly in areas such as Artificial Intelligence, Data Science, and Cryptography. Throughout his academic career, he has gained a robust understanding of both theoretical and practical aspects of the field, which has informed his subsequent research and teaching. This solid educational background, combined with his ongoing research contributions, enables him to be a leader in his academic and professional endeavors.

Professional Experience

Dr. Hossein Nematzadeh has extensive professional experience in academia and research. He is currently serving as an Assistant Professor at the Modern College of Business and Science in Oman, where he teaches and supervises students in the field of Computer Science. Prior to this role, he was a researcher at Universidad de Málaga in Spain from 2021 to 2024, contributing to several high-impact research projects in Artificial Intelligence and Data Science. From 2012 to 2021, he served as an Assistant Professor at Islamic Azad University in Iran, where he taught various computer science courses and engaged in research activities. Throughout his career, Dr. Nematzadeh has built a reputation as both an educator and a researcher, publishing extensively in leading journals and presenting his work in international forums. His expertise spans across Data Science, Artificial Intelligence, and Cryptography, making him a prominent figure in these fields.

Research Interest

Dr. Hossein Nematzadeh’s research interests lie at the intersection of Data Science, Artificial Intelligence, Cryptography, and Software Engineering. He is particularly focused on developing advanced techniques in explainable AI, feature selection, and noise detection, with an emphasis on making AI models more interpretable and reliable. His work in evolutionary algorithms and fuzzy logic explores ways to optimize decision-making processes and improve system performance. Dr. Nematzadeh is also passionate about cryptography, specifically in areas such as image encryption, which contributes to enhancing data security in digital environments. Additionally, he has a strong interest in software engineering, with research dedicated to verification and validation processes, as well as the application of Petri nets to model and analyze complex systems. His research aims to push the boundaries of AI and machine learning, providing solutions to both theoretical and practical challenges in these rapidly evolving fields.

Award and Honor

Dr. Hossein Nematzadeh has earned recognition for his contributions to research and academia throughout his career. He has received several honors for his work in the fields of Data Science, Artificial Intelligence, and Cryptography, particularly for his research on explainable AI and feature selection methods. Dr. Nematzadeh’s scholarly impact is reflected in his publications in prestigious journals such as Engineering Applications of Artificial Intelligence and Knowledge-Based Systems. His work has been widely cited, demonstrating the influence of his research on the scientific community. In addition to his academic accomplishments, Dr. Nematzadeh has been actively involved in mentoring students and contributing to the advancement of his field through teaching and supervision. His dedication to fostering new talent in Computer Science and his continuous pursuit of research excellence have earned him respect within academic circles, making him a highly regarded figure in the global academic and research community.

Publications Top Noted

  • Title: Medical image encryption using a hybrid model of modified genetic algorithm and coupled map lattices
    Authors: H Nematzadeh, R Enayatifar, H Motameni, FG Guimarães, VN Coelho
    Year: 2018
    Cited by: 157
  • Title: A hybrid feature selection method based on information theory and binary butterfly optimization algorithm
    Authors: Z Sadeghian, E Akbari, H Nematzadeh
    Year: 2021
    Cited by: 116
  • Title: Heuristic filter feature selection methods for medical datasets
    Authors: M Alirezanejad, R Enayatifar, H Motameni, H Nematzadeh
    Year: 2020
    Cited by: 78
  • Title: Binary search tree image encryption with DNA
    Authors: H Nematzadeh, R Enayatifar, M Yadollahi, M Lee, G Jeong
    Year: 2020
    Cited by: 72
  • Title: Frequency based feature selection method using whale algorithm
    Authors: H Nematzadeh, R Enayatifar, M Mahmud, E Akbari
    Year: 2019
    Cited by: 66
  • Title: Emergency role-based access control (E-RBAC) and analysis of model specifications with alloy
    Authors: F Nazerian, H Motameni, H Nematzadeh
    Year: 2019
    Cited by: 52
  • Title: Predicting air pollution in Tehran: Genetic algorithm and back propagation neural network
    Authors: M Asghari, H Nematzadeh
    Year: 2016
    Cited by: 51
  • Title: A novel image security technique based on nucleic acid concepts
    Authors: M Yadollahi, R Enayatifar, H Nematzadeh, M Lee, JY Choi
    Year: 2020
    Cited by: 33
  • Title: Mapping to convert activity diagram in fuzzy UML to fuzzy petri net
    Authors: H Motameni, A Movaghar, I Daneshfar, H Nemat Zadeh, J Bakhshi
    Year: 2008
    Cited by: 30
  • Title: Automatic ensemble feature selection using fast non-dominated sorting
    Authors: S Abasabadi, H Nematzadeh, H Motameni, E Akbari
    Year: 2021
    Cited by: 28
  • Title: A mixed solution-based high agreement filtering method for class noise detection in binary classification
    Authors: M Samami, E Akbari, M Abdar, P Plawiak, H Nematzadeh, ME Basiri, …
    Year: 2020
    Cited by: 24
  • Title: Comparison of Decision Tree Methods in Classification of Researcher’s Cognitive Styles in Academic Environment
    Authors: ZN Balagatabi, R Ibrahim, HN Balagatabi
    Year: 2015
    Cited by: 24

Amir Reza Rahimi | Computer | Best Researcher Award

Dr. Amir Reza Rahimi | Computer | Best Researcher Award

PHD at University of Valencia, Spain

Dr. Amir Reza Rahimi is a Ph.D. candidate at the University of Valencia, specializing in language, literature, culture, and their applications. With extensive experience teaching English at universities, high schools, and language institutes in Iran, he is actively involved in research projects like FORTHEM and SOCIEMOVE, focusing on fostering socioemotional skills through virtual exchange. Dr. Rahimi has conducted workshops for language teachers on integrating technology into English teaching and has published extensively in prestigious journals such as Computer-Assisted Language Learning and Computers in Human Behavior Reports. His research has been presented at international conferences, and he is recognized for introducing innovative educational methodologies, earning the Best Research Award in Innovation in Data Analysis. His expertise spans psycholinguistics, CALL, MOOCs, virtual exchange, and teacher education. With a passion for advancing language learning, Dr. Rahimi continues to make significant contributions to the intersection of technology and education.

Professional Profile 

Education

Dr. Amir Reza Rahimi has an extensive academic background, beginning with a Bachelor’s degree in English Language Teaching from the University of Mohaghegh Ardabili in Iran, completed between 2014 and 2017. He then pursued a Master’s degree in English Language Teaching at Shahid Rajaee Teacher Training University in Tehran, Iran, where he conducted research on the impact of massive open online courses (MOOCs) on Iranian EFL learners’ self-regulation and motivation. Dr. Rahimi is currently a Ph.D. candidate at the University of Valencia, Spain, where he is studying language, literature, culture, and their applications. His doctoral research is focused on exploring innovative methods in language learning, particularly through virtual exchange and computer-assisted language learning (CALL). Throughout his educational journey, Dr. Rahimi has continuously demonstrated a commitment to advancing the field of language education through research, publications, and participation in international academic projects.

Professional Experience

Dr. Amir Reza Rahimi has a rich and diverse professional experience in the field of language education. He has taught English at various institutions, including universities, high schools, and language institutes in Iran, where he developed expertise in teaching English as a foreign language (EFL). His teaching career spans over several years, during which he contributed to curriculum development and language instruction. Dr. Rahimi is currently involved in the FORTHEM Research Project and the SOCIEMOVE project, where he serves as a mentor researcher and focuses on developing socioemotional skills through virtual exchange. Additionally, he has conducted workshops for language teachers, helping them incorporate technology into their teaching practices. His research, which bridges the gap between language learning and technology, has led to numerous publications in high-impact journals. Dr. Rahimi’s professional experience reflects his dedication to enhancing language education through innovative methodologies and research-driven approaches.

Research Interest

Dr. Amir Reza Rahimi’s research interests primarily focus on the intersection of language education, technology, and learner motivation. His work explores various aspects of computer-assisted language learning (CALL), particularly how digital tools and virtual exchanges can enhance language learning experiences. Dr. Rahimi is deeply interested in the role of massive open online courses (MOOCs) and the development of self-regulation and motivation in online language learners. He also delves into psycholinguistics, exploring how emotional and psychological factors influence language acquisition. His research further investigates the impact of socioemotional skills on language learners, especially through virtual exchange programs like SOCIEMOVE. Additionally, he examines theory development in education, with a particular emphasis on innovative research designs, such as bisymmetric approaches. Dr. Rahimi’s work aims to bridge the gap between technology and language teaching, contributing to the advancement of both educational theory and practice in the digital age.

Award and Honor

Dr. Amir Reza Rahimi has received several prestigious awards and honors for his outstanding contributions to language education and research. Notably, he won the Best Research Award in Innovation in Data Analysis from ScienceFather for introducing a new research design to the field of education, specifically a bisymmetric research design. This recognition highlights his innovative approach to research methodology, particularly in the context of computer-assisted language learning (CALL). Dr. Rahimi’s research has also earned him multiple publications in top-tier journals such as Computer-Assisted Language Learning, Computers in Human Behavior Reports, and Education and Information Technologies, where his work on language learning, virtual exchange, and online motivation has gained significant academic attention. His accomplishments have been further acknowledged through his active participation in international conferences, including the TESOL International Convention and the World CALL Conference. Dr. Rahimi’s honors reflect his commitment to advancing language education through technology and innovation.

Conclusion

Amir Reza Rahimi is a highly accomplished researcher whose contributions to CALL, psycholinguistics, and educational technology make him a strong contender for the Best Researcher Award. His innovative approaches, impactful publications, and leadership in international projects are commendable. To further solidify his candidacy, increased interdisciplinary collaboration, a focus on societal impact, and broader dissemination of his work are recommended. Overall, his profile aligns well with the criteria for excellence in research, making him a suitable nominee for this award.

Publications Top Noted

  • The role of university teachers’ 21st-century digital competence in their attitudes toward ICT integration in higher education: Extending the theory of planned behavior
    Authors: AR Rahimi, D Tafazoli
    Year: 2022
    Citation: The JALT CALL Journal, 18(2), 1832-4215
  • Unifying EFL learners’ online self‑regulation and online motivational self‑system in MOOCs: A structural equation modeling approach
    Authors: AR Rahimi, Z Cheraghi
    Year: 2022
    Citation: Journal of Computers in Education, 9(4)
  • EFL learners’ attitudes toward the usability of LMOOCs: A qualitative content analysis
    Authors: AR Rahimi, D Tafazoli
    Year: 2022
    Citation: The Qualitative Report, 27(1), 158-173
  • The role of EFL learners’ L2 self-identities, and authenticity gap on their intention to continue LMOOCs: Insights from an exploratory partial least approach
    Author: AR Rahimi
    Year: 2023
    Citation: Computer Assisted Language Learning, 1-32
  • Online motivational self-system in MOOC: A qualitative study
    Author: AR Rahimi
    Year: 2021
    Citation: From emotion to knowledge: emerging ecosystems in language learning, 79-86
  • Beyond digital competence and language teaching skills: The bi-level factors associated with EFL teachers’ 21st-century digital competence to cultivate 21st-century digital skills
    Author: AR Rahimi
    Year: 2024
    Citation: Education and Information Technologies, 29(8), 9061-9089
  • A bi-phenomenon analysis to escalate higher educators’ competence in developing university students’ information literacy (HECDUSIL): The role of language lecturers’ conceptual …
    Author: AR Rahimi
    Year: 2024
    Citation: Education and Information Technologies, 29(6), 7195-7222
  • The role of twenty-first century digital competence in shaping pre-service teacher language teachers’ twenty-first century digital skills: the Partial Least Square Modeling …
    Authors: AR Rahimi, Z Mosalli
    Year: 2024
    Citation: Journal of Computers in Education
  • A tri-phenomenon perspective to mitigate MOOCs’ high dropout rates: the role of technical, pedagogical, and contextual factors on language learners’ L2 motivational selves, and …
    Author: AR Rahimi
    Year: 2024
    Citation: Smart Learning Environments, 11(1), 11
  • Determinants of Online Platform Diffusion during COVID-19: Insights from EFL Teachers’ Perspectives
    Authors: AR Rahimi, S Atefi Boroujeni
    Year: 2022
    Citation: Journal of Foreign Language Teaching and Translation Studies, 7(4), 111-136
  • The role of ChatGPT readiness in shaping language teachers’ language teaching innovation and meeting accountability: A bisymmetric approach
    Authors: AR Rahimi, A Sevilla-Pavón
    Year: 2024
    Citation: Computers and Education: Artificial Intelligence, 7, 100258
  • Exploring the direct and indirect effects of EFL learners’ online motivational self-system on their online language learning acceptance: the new roles of current L2 self and …
    Authors: AR Rahimi, Z Mosalli
    Year: 2024
    Citation: Asian-Pacific Journal of Second and Foreign Language Education, 9(1), 49

Siliang Ma | Computer Science | Best Researcher Award

Dr. Siliang Ma | Computer Science | Best Researcher Award

Senior Algorithm Engineer at School of Computer Science and Engineering, South China University of Technology, China

Dr. Siliang Ma, a Ph.D. candidate at South China University of Technology, is an accomplished researcher specializing in computer science with a focus on image processing and machine learning. With an excellent academic record, including a bachelor’s degree from South China Agricultural University (GPA: 3.99/5), Dr. Ma has made significant contributions to cutting-edge research. His works, published in esteemed journals such as Acta Automatica Sinica and Image and Vision Computing, address topics like calligraphy character recognition, multilingual scene text spotting, and efficient bounding box regression through novel loss functions like MPDIoU and FPDIoU. A skilled programmer proficient in Python, Java, and C#, he has developed robust image processing algorithms and software applications. Dr. Ma also contributes as a reviewer for leading conferences like ICRA and ICASSP, reflecting his commitment to advancing the research community. His innovative and impactful work positions him as a rising talent in computational science.

Professional Profile 

Education

Dr. Siliang Ma has a strong educational background in computer science and engineering. He is currently pursuing a Ph.D. at the South China University of Technology, where he has maintained an excellent GPA of 86.33/100. His doctoral research focuses on cutting-edge topics in image processing, machine learning, and computational algorithms, demonstrating both theoretical depth and practical relevance. Prior to this, Dr. Ma earned his bachelor’s degree from South China Agricultural University, graduating with a remarkable GPA of 3.99/5. His undergraduate studies in mathematics and informatics laid a solid foundation for his advanced research pursuits, equipping him with the analytical and technical skills essential for solving complex computational problems. Through rigorous academic training and dedication, Dr. Ma has excelled in his education, which is further reflected in his extensive publications in high-impact journals and his active engagement in academic conferences and peer reviews.

Professional Experience

Dr. Siliang Ma has gained valuable professional experience through diverse roles in research and industry, complementing his academic achievements. He interned as a Data Analyst at the China Construction Bank Guangdong Branch Technology Center, where he conducted financial data analysis using PostgreSQL, mastering database operations and complex linked table queries. As a Quality Engineer at the China Mobile Guangdong Branch Business Support Center, he developed a JavaWeb-based minimum feature set for user registration, login, and management, and implemented automated quality testing workflows using Jenkins. These roles allowed Dr. Ma to hone his skills in software development, data analysis, and quality assurance, showcasing his ability to translate theoretical knowledge into practical applications. Additionally, his expertise in programming and image processing has led to impactful contributions in academia, particularly in algorithm development. This blend of industrial and research experience positions Dr. Ma as a versatile professional in computer science and engineering.

Research Interest

Dr. Siliang Ma’s research interests lie at the intersection of computer vision, machine learning, and image processing. He is particularly focused on developing innovative algorithms and techniques for efficient and accurate object detection, scene text recognition, and character recognition. His work explores advanced loss functions, such as MPDIoU and FPDIoU, to optimize bounding box regression for both traditional and rotated object detection. Additionally, Dr. Ma has a keen interest in multilingual scene text spotting, where he leverages character-level features and benchmarks to improve the accuracy of text recognition across diverse languages. His research extends to robust graph learning and hypergraph-enhanced self-supervised models for social recommendation systems, showcasing his ability to address complex, real-world challenges. Through his work, Dr. Ma aims to bridge theoretical advancements with practical applications, contributing to the broader fields of artificial intelligence, data analysis, and computational optimization.

Award and Honor

Dr. Siliang Ma has been recognized for his academic and research excellence through various accolades and contributions. As a Ph.D. candidate at South China University of Technology, his consistent high performance, reflected in his impressive GPA, underscores his dedication to academic rigor. Although specific awards or honors are not explicitly listed in his profile, his role as a reviewer for prestigious conferences such as ICRA and ICASSP highlights his esteemed position within the research community. Dr. Ma’s impactful publications in top-tier journals and conferences, including Acta Automatica Sinica and Image and Vision Computing, further demonstrate the high regard in which his work is held. His innovative contributions to image processing and machine learning have earned him recognition as a rising talent in his field. These achievements reflect Dr. Ma’s commitment to advancing computational science and his growing influence in academic and professional circles.

Conclusion

Siliang Ma is a strong candidate for the Best Researcher Award due to his impressive academic record, significant publications, and technical expertise. His contributions to advanced image processing algorithms and innovative loss functions for object detection demonstrate technical ingenuity and research excellence. To further strengthen his profile, he could expand his research impact through interdisciplinary work, mentorship roles, and greater industry engagement.

Publications Top Noted

  • Title: FPDIoU Loss: A loss function for efficient bounding box regression of rotated object detection
    Authors: Siliang Ma, Yong Xu
    Year: 2024
    Citation: Ma, S., & Xu, Y. (2024). FPDIoU Loss: A loss function for efficient bounding box regression of rotated object detection. Image and Vision Computing. https://doi.org/10.1016/j.imavis.2024.105381
  • Title: Rethinking Multilingual Scene Text Spotting: A Novel Benchmark and a Character-Level Feature Based Approach
    Authors: Siliang Ma, Yong Xu
    Year: 2024
    Citation: Ma, S., & Xu, Y. (2024). Rethinking Multilingual Scene Text Spotting: A Novel Benchmark and a Character-Level Feature Based Approach. American Journal of Computer Science and Technology. https://doi.org/10.11648/j.ajcst.20240703.12