Kin Fai Tong | Engineering | Best Researcher Award

Prof. Dr. Kin Fai Tong | Engineering | Best Researcher Award

Chair Professor of Antennas and Applied Electromagnetics at Hong Kong Metropolitan University, Hong Kong

Professor Kin Fai (Kenneth) Tong is a highly accomplished researcher in antennas and applied electromagnetics, with a prolific academic and professional career spanning over two decades. He holds a Ph.D. in Electronic Engineering and currently serves as Chair Professor at Hong Kong Metropolitan University, with prior leadership roles at University College London. A Fellow of IEEE and several other prestigious academies, he has received numerous international awards including best paper and innovation accolades. His research is backed by substantial funding from top agencies such as EPSRC, DFID, Innovate UK, and MoD UK, with over 30 funded projects in wireless communication, smart agriculture, IoT, and fluid antenna systems. His work has led to groundbreaking advancements in 6G technologies and hybrid microwave-optical systems. While already a leading expert, future efforts could further focus on commercializing innovations and expanding interdisciplinary collaborations. Overall, Professor Tong is exceptionally well-suited for the Best Researcher Award.

Professional Profile

Education🎓

Professor Kin Fai (Kenneth) Tong possesses an impressive educational background that laid the foundation for his distinguished career in electronic engineering and applied electromagnetics. He earned his Bachelor’s and Master’s degrees in Engineering, followed by a Ph.D. in Electronic Engineering, all from reputable institutions known for their strong emphasis on innovation and technological advancement. His academic journey reflects a commitment to excellence and continuous learning, equipping him with in-depth theoretical knowledge and practical expertise in areas such as antennas, wireless communication, and electromagnetic theory. Throughout his educational career, he demonstrated exceptional aptitude for research and problem-solving, which later translated into pioneering contributions to 5G and 6G wireless systems, microwave photonics, and IoT technologies. Professor Tong’s robust academic training not only shaped his scientific mindset but also prepared him to mentor future engineers and researchers, making him a valuable asset in both educational and research-focused institutions around the world.

Professional Experience📝

Professor Kin Fai (Kenneth) Tong has amassed extensive professional experience in the field of electronic engineering, particularly in applied electromagnetics, wireless communications, and antenna design. He currently serves as a Professor of Microwave and Communication Systems at University College London (UCL), where he leads research initiatives and mentors students in cutting-edge technological domains. Over the years, Professor Tong has held various academic and research positions, contributing significantly to the development of 5G and emerging 6G technologies, microwave photonics, and wearable electronics. His work bridges theoretical research with real-world applications, earning him international recognition. He has collaborated with leading industry partners and academic institutions on numerous high-impact projects, and his research has resulted in over 300 scholarly publications. Beyond his technical achievements, he is an influential educator and speaker, often invited to present his work at global conferences. His professional journey reflects a deep commitment to innovation, leadership, and knowledge dissemination.

Research Interest🔎

Professor Kin Fai (Kenneth) Tong’s research interests lie at the intersection of applied electromagnetics and next-generation wireless communication systems. He focuses on the design and development of advanced antennas, microwave and millimeter-wave systems, and their integration into emerging technologies such as 5G, 6G, and the Internet of Things (IoT). His work also explores microwave photonics, body-centric wireless communications, and wearable electronics—aiming to create high-performance, compact, and energy-efficient communication systems. Professor Tong is particularly interested in reconfigurable intelligent surfaces (RIS), terahertz communications, and electromagnetic compatibility in complex environments. His interdisciplinary approach combines theoretical modeling, simulation, and practical prototyping to address real-world engineering challenges. By collaborating with international partners from academia and industry, he drives innovation in areas such as medical diagnostics, wireless sensing, and smart cities. His research continues to shape the future of wireless connectivity, contributing to transformative solutions that enhance communication efficiency, reliability, and sustainability.

Award and Honor🏆

Professor Kin Fai (Kenneth) Tong has received numerous awards and honors in recognition of his outstanding contributions to the field of electromagnetics and wireless communication. He is a Fellow of the Institution of Engineering and Technology (IET) and a Senior Member of the Institute of Electrical and Electronics Engineers (IEEE), reflecting his esteemed professional standing. Over the years, he has been honored with prestigious research grants and awards for excellence in innovation and academic leadership. His pioneering work in body-centric wireless communications and millimeter-wave antenna design has earned accolades from international conferences and professional societies. Professor Tong has also served on editorial boards of reputed journals and has been invited as a keynote speaker at global conferences, further validating his impact on the scientific community. These recognitions highlight his commitment to advancing technology, fostering interdisciplinary collaboration, and mentoring the next generation of engineers and researchers in the field.

Research Skill🔬

Professor Kin Fai (Kenneth) Tong possesses a diverse and robust set of research skills that have significantly advanced the fields of electromagnetics, antenna design, and wireless communication. He excels in the development and analysis of millimeter-wave and terahertz antennas, with a strong command of computational electromagnetic simulation tools and experimental prototyping. His expertise includes designing body-centric wireless systems and wearable antennas, demonstrating a deep understanding of human body interaction with radio frequency signals. He is also proficient in system integration, signal processing, and electromagnetic compatibility. Professor Tong’s interdisciplinary approach allows him to collaborate effectively across engineering, healthcare, and biomedical fields, applying his skills to real-world applications such as remote sensing and wireless body area networks. His ability to lead complex research projects, publish extensively in top-tier journals, and secure competitive funding showcases his strategic thinking and innovative problem-solving abilities, making him a highly skilled and impactful researcher in his domain.

Conclusion💡

Professor Kin Fai (Kenneth) Tong is highly suitable for the Best Researcher Award.
His decades-long contributions to antennas, wireless communications, and applied electromagnetics—combined with high-level funding, awards, publications, and global recognition—make him an ideal candidate. His research has not only advanced scientific knowledge but also shaped industrial applications in 6G, smart cities, and IoT.

Publications Top Noted✍️

  • Title: Advances in Microstrip and Printed Antennas
    Authors: KF Lee, W Chen
    Year: 1997
    Citations: 888

  • Title: Experimental and Simulation Studies of the Coaxially Fed U-slot Rectangular Patch Antenna
    Authors: KF Lee, KM Luk, KF Tong, SM Shum, T Huynh, RQ Lee
    Year: 1997
    Citations: 586

  • Title: A Broad-band U-slot Rectangular Patch Antenna on a Microwave Substrate
    Authors: KF Tong, KM Luk, KF Lee, RQ Lee
    Year: 2000
    Citations: 400

  • Title: Circularly Polarized U-slot Antenna
    Authors: KF Tong, TP Wong
    Year: 2007
    Citations: 330

  • Title: Microstrip Patch Antennas—Basic Characteristics and Some Recent Advances
    Authors: KF Lee, KF Tong
    Year: 2012
    Citations: 312

  • Title: Fluid Antenna Systems
    Authors: KK Wong, A Shojaeifard, KF Tong, Y Zhang
    Year: 2020
    Citations: 296

  • Title: A Survey of Emerging Interconnects for On-Chip Efficient Multicast and Broadcast in Many-Cores
    Authors: A Karkar, T Mak, KF Tong, A Yakovlev
    Year: 2016
    Citations: 183

  • Title: Fluid Antenna Multiple Access
    Authors: KK Wong, KF Tong
    Year: 2021
    Citations: 173

  • Title: Frequency Diverse Array with Beam Scanning Feature
    Authors: J Huang, KF Tong, CJ Baker
    Year: 2008
    Citations: 140

  • Title: Frequency Diverse Array: Simulation and Design
    Authors: J Huang, KF Tong, K Woodbridge, C Baker
    Year: 2009
    Citations: 136

Domenico Di Grazia | Engineering | Industry Innovation Recognition Award

Dr. Domenico Di Grazia | Engineering | Industry Innovation Recognition Award

Principal Engineer at STMicroelectronics, Italy

Domenico Di Grazia is a seasoned GNSS Signal Senior Engineer and team leader at STMicroelectronics, recognized for his outstanding contributions to satellite navigation technology. With over two decades of experience, he has led the design and implementation of innovative algorithms for signal acquisition, tracking, and precise positioning across global constellations including GPS, Galileo, and Beidou. He holds several U.S. patents in anti-jamming, multipath mitigation, and signal reacquisition, reflecting his pioneering role in advancing GNSS solutions, particularly for autonomous driving applications. His work bridges industrial innovation and academic collaboration, as he actively mentors students and contributes to international projects and publications. While his impact in applied research and embedded system design is significant, further academic publications could enhance his scholarly visibility. Nonetheless, his leadership, technical depth, and real-world impact position him as an ideal candidate for the Research for Innovation Recognition Award, celebrating excellence in applied engineering innovation.

Professional Profile 

Education🎓

Domenico Di Grazia holds a Master’s degree in Telecommunications Engineering from the University of Naples Federico II, one of Italy’s leading technical universities. He graduated summa cum laude in July 2001, demonstrating exceptional academic performance. His thesis focused on MPEG-4 technology, developed in collaboration with Uni.Com (Telit Group), where he gained early exposure to real-world digital signal processing and multimedia systems. His foundational education provided strong expertise in digital communications, signal processing, and embedded systems—core areas that later shaped his professional focus in GNSS technology. Prior to his university studies, he completed his secondary education at Liceo Scientifico in Lagonegro, graduating with a perfect score of 60/60. Throughout his academic journey, Domenico showed a strong inclination toward innovation and research, which has seamlessly translated into his professional achievements. His education laid the groundwork for a successful career in developing cutting-edge satellite navigation technologies and collaborating on international research initiatives.

Professional Experience📝

Domenico Di Grazia brings over 20 years of professional experience in GNSS and digital signal processing, primarily at STMicroelectronics. Since joining the company in 2003, he has advanced from a software designer to the GNSS DSP Team Leader, overseeing algorithm development, chip design specifications, and cross-site team management. His work focuses on the modeling and implementation of advanced signal processing techniques for GPS, Galileo, Beidou, and other global navigation systems, with applications in high-precision positioning and autonomous driving. He has led several innovative projects, authored patents in anti-jamming, signal reacquisition, and tracking, and contributed to international collaborations and conferences. Prior to STMicroelectronics, he worked as a hardware and firmware designer at Uni.Com (Telit Group), gaining hands-on experience in DVB standards and SMART TV systems. Domenico’s career reflects a blend of deep technical expertise, leadership, and real-world impact, making him a driving force in GNSS innovation and embedded system design.

Research Interest🔎

Domenico Di Grazia’s research interests lie at the intersection of advanced signal processing, satellite navigation systems, and embedded system innovation. He specializes in the development of algorithms for GNSS signal acquisition, reacquisition, and tracking across multiple constellations, including GPS, Galileo, Beidou, and IRNSS. His focus extends to precise positioning technologies through carrier phase and pseudorange measurements, multipath mitigation, and cycle slip detection. Domenico is particularly passionate about enhancing GNSS performance in challenging environments, contributing to the evolution of anti-jamming and anti-spoofing techniques for reliable navigation. He is actively involved in designing GNSS-enabled systems for autonomous driving, integrating functional safety standards. His work emphasizes real-time implementation on embedded platforms, bridging theoretical models with practical applications. Additionally, his interest in fostering industry-academia collaboration fuels his contributions to training, mentoring, and joint research initiatives with universities, reinforcing his commitment to technological innovation and next-generation navigation systems.

Award and Honor🏆

Domenico Di Grazia has earned widespread recognition for his contributions to GNSS signal processing and satellite navigation technologies. He holds several prestigious U.S. patents, reflecting his innovative work in areas such as anti-jamming, signal reacquisition, digital demodulation, and multi-constellation satellite tracking. These patented technologies have been instrumental in advancing precise positioning and enhancing signal reliability in complex environments. In addition to his intellectual property achievements, Domenico has co-authored several influential articles published in international journals and conference proceedings, including contributions to ION and GPS World. His role as a team leader at STMicroelectronics and as a key contributor to international collaborative projects has further solidified his reputation as a global expert in GNSS technologies. Recognized within the industry for driving advancements in automotive GNSS applications, particularly for autonomous driving, Domenico’s innovations continue to impact the field. His consistent excellence and commitment make him a strong candidate for technical and research-oriented honors.

Research Skill🔬

Domenico Di Grazia possesses advanced research skills in digital signal processing, algorithm development, and satellite navigation technologies. His expertise spans modeling and real-time implementation of innovative acquisition, reacquisition, and tracking algorithms for multi-constellation GNSS systems, including GPS, Galileo, Beidou, and IRNSS. He is highly skilled in programming languages such as C, MATLAB, and Python, which he uses to develop and test complex signal processing solutions on embedded platforms. Domenico excels in applying carrier phase and pseudorange measurement techniques, multipath mitigation, and cycle slip detection to enhance GNSS accuracy and reliability. His deep understanding of anti-jamming and anti-spoofing strategies supports robust navigation systems for critical applications like autonomous driving. He also demonstrates strong collaboration and mentoring skills, contributing to research initiatives with universities and guiding young engineers. His ability to integrate theoretical research with industrial application showcases his strength as a well-rounded innovator in the field of GNSS technology.

Conclusion💡

Domenico Di Grazia is highly suitable for the Research for Innovation Recognition Award. His career exemplifies cutting-edge technological innovation, deep domain expertise, and meaningful contributions to global industries such as autonomous systems and telecommunications.

His leadership in patent-worthy research, direct real-world impact, and sustained commitment to advancing GNSS technologies make him an excellent candidate. Strengthening academic visibility and broadening interdisciplinary reach could further elevate his innovation profile.

Publications Top Noted✍️

1. Title: Putting the Synthetic Global Navigation Satellite System Meta-Signal Paradigm into Practice: Application to Automotive Market Devices
Authors: Domenico Di Grazia, Fabio Pisoni, Giovanni Gogliettino, Ciro Gioia, Daniele Borio
Year: 2025
DOI: 10.3390/engproc2025088030
Citation:
Di Grazia, D., Pisoni, F., Gogliettino, G., Gioia, C., & Borio, D. (2025). Putting the Synthetic Global Navigation Satellite System Meta-Signal Paradigm into Practice: Application to Automotive Market Devices. Engineering Proceedings, MDPI. https://doi.org/10.3390/engproc2025088030

2. Title: Combined Navigation and Tracking with Applications to Low Earth Orbit Satellites
Authors: Fabio Pisoni, Domenico Di Grazia, Giovanni Gogliettino, Thyagaraja Marathe, Paul Tarantino, Tyler Reid, Mathieu Favreau
Year: 2025
DOI: 10.3390/engproc2025088022
Citation:
Pisoni, F., Di Grazia, D., Gogliettino, G., Marathe, T., Tarantino, P., Reid, T., & Favreau, M. (2025). Combined Navigation and Tracking with Applications to Low Earth Orbit Satellites. Engineering Proceedings, MDPI. https://doi.org/10.3390/engproc2025088022

Mohamed Zakaria | Engineering | Best Researcher Award

Dr. Mohamed Zakaria | Engineering | Best Researcher Award

Kafrelsheikh University Faculty of Engineering, Egypt

Dr. Mohamed H. Zakaria, an Assistant Professor in Civil Engineering at Kafrelsheikh University, Egypt, is a dedicated researcher specializing in Soil Mechanics, Foundation Engineering, Highway Engineering, and Reinforced Concrete. With a Ph.D. from Menoufia University and a consistent academic trajectory, he has published extensively in reputable international journals, contributing innovative research on structural behavior, excavation systems, and the integration of advanced techniques such as machine learning and finite element modeling. His recent work addresses critical infrastructure challenges, reflecting both technical depth and practical relevance. Dr. Zakaria maintains active profiles on ORCID, Scopus, and ResearchGate, demonstrating his engagement with the global research community. His research reflects strong potential for collaboration and societal impact. While he could further enhance his profile through increased citations, international projects, and mentorship roles, his achievements and commitment make him a highly suitable candidate for the Best Researcher Award, with significant promise for future contributions.

Professional Profile 

Education🎓

Dr. Mohamed H. Zakaria has pursued a robust and progressive academic path in the field of Civil Engineering. He earned his Ph.D. in Civil Engineering from Menoufia University, Egypt, where he focused on advanced geotechnical and structural engineering concepts. Prior to this, he obtained a Master of Science degree in Civil Engineering from Kafrelsheikh University, further deepening his expertise in soil mechanics and foundation engineering. His academic journey began at Kafrelsheikh University, where he laid a strong foundation in engineering principles. Throughout his educational career, Dr. Zakaria demonstrated academic excellence, dedication to research, and a commitment to innovation. His studies have equipped him with both theoretical knowledge and practical problem-solving skills, which are evident in his applied research and numerous publications. His educational background not only reflects a high level of specialization in his chosen field but also positions him well for continued contributions to civil engineering education and research.

Professional Experience📝

Dr. Mohamed H. Zakaria has amassed extensive professional experience in the field of Civil Engineering, primarily through his longstanding association with Kafrelsheikh University in Egypt. He began his academic career as a Demonstrator in 2014, steadily progressing to the position of Assistant Lecturer in 2019, and currently serves as an Assistant Professor in the Civil Engineering Department. His roles have encompassed teaching, mentoring, and conducting impactful research in soil mechanics, foundation engineering, and highway engineering. Dr. Zakaria has contributed significantly to the academic community through his involvement in experimental investigations, numerical modeling, and structural analysis. His research has been published in numerous high-impact journals, reflecting both academic rigor and practical relevance. Through his professional journey, he has demonstrated a strong commitment to advancing civil engineering knowledge and fostering innovation. His experience positions him as a capable educator, active researcher, and a valuable contributor to both academic and applied engineering projects.

Research Interest🔎

Dr. Mohamed H. Zakaria’s research interests are rooted in the core areas of Civil Engineering, with a particular focus on Soil Mechanics, Foundation Engineering, Highway Engineering, and Reinforced Concrete. He is especially passionate about understanding and improving the behavior of structural systems under various loading and environmental conditions. His work explores critical challenges such as settlement mitigation, bearing capacity enhancement, and the structural performance of pile walls and reinforced concrete elements. Dr. Zakaria is also interested in the application of advanced techniques like finite element modeling, machine learning, and experimental methods to optimize design and construction practices. His interdisciplinary approach combines theoretical modeling with practical experimentation, aiming to develop innovative and sustainable engineering solutions. Through his research, he seeks to enhance the safety, durability, and efficiency of infrastructure systems, making a tangible impact on both academic knowledge and engineering practice. His work invites collaboration and has strong potential for global relevance.

Award and Honor🏆

Dr. Mohamed H. Zakaria has earned recognition for his dedication to research and academic excellence in Civil Engineering. While specific named awards and honors are not extensively listed in public records, his consistent publication of high-quality research in reputable, peer-reviewed international journals reflects his scholarly impact and recognition within the academic community. His achievements in developing innovative solutions for geotechnical and structural engineering challenges, such as enhancing the performance of secant pile walls and utilizing machine learning in structural prediction, demonstrate both technical expertise and thought leadership. His rising citation metrics and growing international research collaborations also highlight his influence and professional standing. Dr. Zakaria’s academic progression—from Demonstrator to Assistant Professor at Kafrelsheikh University—illustrates his merit and recognition by peers and institutions. As he continues to contribute significantly to his field, he is well-positioned to receive further honors and awards in acknowledgment of his impactful research and academic leadership.

Research Skill🔬

Dr. Mohamed H. Zakaria possesses a diverse and well-developed set of research skills that span both theoretical and practical aspects of Civil Engineering. He is highly proficient in experimental design and laboratory testing, particularly in the areas of soil mechanics, foundation behavior, and reinforced concrete structures. His ability to conduct complex analyses is complemented by his expertise in numerical modeling, including the use of finite element methods for simulating structural and geotechnical behavior. Additionally, Dr. Zakaria has demonstrated skill in applying advanced technologies such as machine learning to predict structural performance, showcasing his adaptability and innovation in solving engineering problems. He is also adept at conducting comprehensive literature reviews, synthesizing technical data, and publishing findings in high-impact journals. His collaborative approach and strong communication skills enhance his ability to work across multidisciplinary teams. Overall, his research skillset makes him a valuable contributor to academic advancements and practical engineering solutions.

Conclusion💡

Dr. Mohamed H. Zakaria is a highly promising and dedicated researcher with a strong and focused track record in civil engineering. His steady academic career, continuous publication record, and exploration of advanced methods like machine learning and FE modeling in civil applications showcase technical excellence and innovative thinking.

Publications Top Noted✍️

  1. Title: Mitigating Settlement and Enhancing Bearing Capacity of Adjacent Strip Footings Using Sheet Pile Walls: An Experimental Approach
    Authors: Ali Basha, Ahmed Yousry Akal, Mohamed H. Zakaria
    Year: 2025
    Citation: Infrastructures, 2025, DOI: 10.3390/infrastructures10040083

  2. Title: A Comparative Study of Terrestrial Laser Scanning and Photogrammetry: Accuracy and Applications
    Authors: Mohamed H. Zakaria, Hossam Fawzy, Mohammed El-Beshbeshy, Magda Farhan
    Year: 2025
    Citation: Civil Engineering Journal, March 2025, DOI: 10.28991/cej-2025-011-03-021

  3. Title: Cantilever Piled-Wall Design Criteria in Cohesionless Soil: A Review
    Authors: Mohamed Hamed Zakaria, Ali Basha
    Year: 2024
    Citation: World Journal of Engineering, 2024, DOI: 10.1108/WJE-01-2024-0038

  4. Title: Prediction of RC T-Beams Shear Strength Based on Machine Learning
    Authors: Saad A. Yehia, Sabry Fayed, Mohamed H. Zakaria, Ramy I. Shahin
    Year: 2024
    Citation: International Journal of Concrete Structures and Materials, 2024, DOI: 10.1186/S40069-024-00690-Z

  5. Title: Effect of Insufficient Tension Lap Splices on the Deformability and Crack Resistance of Reinforced Concrete Beams: A Comparative Study Techniques and Experimental Study
    Authors: Roba Osman, Boshra El-taly, Ahmed Fahmy, Mohamed Zakaria
    Year: 2024
    Citation: Engineering Research Journal, Nov 2024, DOI: 10.21608/erjm.2024.296635.1337

  6. Title: Predicting the Maximum Axial Capacity of Secant Pile Walls Embedded in Sandy Soil
    Authors: Ali M. Basha, Mohamed H. Zakaria, Maher T. El-Nimr, Mohamed M. Abo-Raya
    Year: 2024
    Citation: Geotechnical and Geological Engineering, July 2024, DOI: 10.1007/s10706-023-02734-9

  7. Title: Two-Dimensional Numerical Approaches of Excavation Support Systems: A Comprehensive Review of Key Considerations and Modelling Techniques
    Authors: Mohamed Hamed Zakaria, Ali Basha
    Year: 2024
    Citation: Journal of Contemporary Technology and Applied Engineering, July 2024, DOI: 10.21608/jctae.2024.299692.1030

  8. Title: Interfacial Shear Behavior of Composite Concrete Substrate to High-Performance Concrete Overly After Exposure to Elevated Temperature
    Authors: Nagat M. Zalhaf, Sabry Fayed, Mohamed H. Zakaria
    Year: 2024
    Citation: International Journal of Concrete Structures and Materials, March 2024, DOI: 10.1186/s40069-023-00654-9

Chafaa Maatoug Hamrouni | Engineering | Excellence in Innovation

Assoc. Prof. Dr. Chafaa Maatoug Hamrouni | Engineering | Excellence in Innovation

Associated Professor at Taif University – khurma University Collegue, Saudi Arabia

Dr. Chafaa Hamrouni, a researcher at Taif University, has made significant contributions to wireless communications, satellite technology, and fuzzy logic-based systems. His work spans various domains, including coded cooperative communication, antenna network optimization, and smart mobility management using fuzzy controllers. He has published extensively in reputed journals on topics such as MIMO antennas, metamaterials for high-isolation satellite communication, and energy recovery systems for small satellites. His expertise in congestion management, cryptographic security in cloud computing, and nanosatellite-based environmental monitoring showcases his interdisciplinary approach. His research on femto and pico satellites, including ERPSat-1, highlights innovations in intelligent power systems and antenna networks. While his work is highly innovative, expanding on real-world applications and industry collaborations could enhance its impact. Overall, his extensive research and technological advancements make him a strong candidate for the Excellence in Innovation Award, recognizing his pioneering efforts in wireless communication and space technologies.

Professional Profile 

Education

Dr. Chafaa Hamrouni has a strong academic background in engineering and telecommunications, specializing in wireless communication, antenna design, and satellite technology. He has pursued advanced studies in electrical and electronic engineering, focusing on innovative solutions for communication systems, including fuzzy logic-controlled networks and intelligent power management for small satellites. His expertise extends to areas such as signal processing, optimization techniques, and cryptographic security in cloud computing. Throughout his academic journey, Dr. Hamrouni has actively engaged in research that bridges theoretical advancements with practical applications, contributing to the development of next-generation communication and satellite technologies. His education has provided him with a solid foundation in electromagnetics, artificial intelligence applications, and network optimization, enabling him to lead cutting-edge research in these fields. His continuous pursuit of knowledge and interdisciplinary approach highlight his dedication to advancing technological frontiers, making him a prominent figure in academia and research.

Professional Experience

Dr. Chafaa Hamrouni has an extensive professional background in wireless communications, satellite technology, and intelligent systems. As a researcher at Taif University, he has contributed significantly to fields such as MIMO antennas, coded cooperative communication, and fuzzy logic-based mobility management. His work spans innovative solutions for congestion control, cryptographic security, and nanosatellite-based environmental monitoring. Dr. Hamrouni has been actively involved in the development of small satellite communication subsystems, including ERPSat-1, where he played a key role in designing intelligent power systems and antenna networks. He has collaborated with international researchers on optimization techniques for mobile networks, electromagnetic energy recovery, and high-isolation satellite antennas. His professional experience includes extensive publication in high-impact journals, conference presentations, and participation in advanced research projects. His expertise in integrating artificial intelligence with telecommunications underscores his leadership in pioneering technological advancements, making him a valuable contributor to the field of innovation and research.

Research Interest

Dr. Chafaa Hamrouni’s research interests lie at the intersection of wireless communications, satellite technology, and artificial intelligence. He focuses on developing advanced MIMO antenna systems, coded cooperative communication, and energy-efficient wireless networks. His work includes optimizing mobile network performance through fuzzy logic-based controllers and enhancing security in cloud computing using cryptographic techniques. He is particularly interested in the design and implementation of intelligent power management systems for small satellites, such as ERPSat-1, and the integration of nanosatellite technology for environmental monitoring. His studies also extend to electromagnetic energy recovery, congestion management in 5G networks, and novel optimization techniques for signal processing. Through his research, Dr. Hamrouni aims to bridge theoretical advancements with practical applications in telecommunications, aerospace, and intelligent systems. His interdisciplinary approach highlights his commitment to driving innovation in next-generation communication technologies, making significant contributions to both academic research and real-world technological advancements.

Award and Honor

Dr. Chafaa Hamrouni has been recognized for his outstanding contributions to wireless communications, satellite technology, and intelligent systems. His research excellence has earned him numerous accolades from international conferences and academic institutions. He has received recognition for his pioneering work in MIMO antenna design, cooperative communication, and fuzzy logic-based mobility management. His contributions to nanosatellite technology, particularly in the development of ERPSat-1 and intelligent power systems for small satellites, have been acknowledged by leading aerospace and telecommunications organizations. Dr. Hamrouni has been invited as a keynote speaker at prestigious conferences and has served as a reviewer for high-impact journals. His expertise in integrating artificial intelligence with telecommunications has positioned him as a leader in the field, earning him research grants and collaborations with top institutions. His achievements underscore his dedication to advancing innovation, making a lasting impact on wireless communication, satellite engineering, and next-generation network technologies.

Research Skill

Dr. Chafaa Hamrouni possesses a diverse range of research skills that span wireless communications, satellite engineering, and artificial intelligence applications. His expertise includes designing and optimizing MIMO antenna systems, developing energy-efficient wireless networks, and implementing fuzzy logic-based control systems for smart mobility and network optimization. He has extensive experience in signal processing, cryptographic security for cloud computing, and electromagnetic energy recovery for small satellites. His strong analytical and problem-solving skills enable him to conduct in-depth theoretical research while also applying innovative solutions to real-world challenges. Dr. Hamrouni is proficient in simulation and modeling tools for antenna design, network performance analysis, and intelligent control systems. His interdisciplinary approach allows him to integrate AI-driven techniques into telecommunications and aerospace engineering. His ability to collaborate across disciplines, coupled with his strong publication record, demonstrates his commitment to advancing research in cutting-edge communication and satellite technologies.

Conclusion

Dr. Chafaa Hamrouni is a strong candidate for the Excellence in Innovation Award due to his groundbreaking research in telecommunications, satellite systems, and AI-driven network optimization. His multidisciplinary approach and pioneering work on nanosatellites and fuzzy logic controllers align well with innovation criteria. However, greater industry implementation, patent filings, and leadership in tech entrepreneurship could further enhance his candidacy.

Publications Top Noted

  • Multi-Agent Mapping and Tracking-Based Electrical Vehicles with Unknown Environment Exploration

    • Authors: C. Hamrouni, A. Alutaybi, G. Ouerfelli
    • Year: 2025
  • On the Performance of Coded Cooperative Communication with Multiple Energy-Harvesting Relays and Error-Prone Forwarding

    • Authors: S. Chaoui, O. Alruwaili, C. Hamrouni, A. Alutaybi, A. Masmoudi
    • Year: 2023
    • Citations: 2
  • Six Generation Load Cells Solution Based Congestion Management Control Purpose

    • Authors: C. Hamrouni, A. Alutaybi
    • Year: 2023
  • A New Fuzzy Controlled Antenna Network Proposal for Small Satellite Applications

    • Authors: C. Hamrouni
    • Year: 2022
    • Citations: 1
  • Various Antenna Structures Performance Analysis Based on Fuzzy Logic Functions

    • Authors: C. Hamrouni, A. Alutaybi, S. Chaoui
    • Year: 2022
    • Citations: 5
  • 5G Smart Mobility Management Based Fuzzy Logic Controller Unit

    • Authors: C. Hamrouni, S. Chaoui
    • Year: 2021
    • Citations: 2
  • New Trend Proposal in Optimization Techniques Application for Mobile Network, Analysis, and Signal Processing

    • Authors: C. Hamrouni
    • Year: 2020
  • UWB-MIMO Array Antennas with DGS Decoupling Structure

    • Authors: C. Abdelhamid, M. Daghari, C. Hamrouni, H. Sakli
    • Year: 2020
    • Citations: 1
  • Complex ESP Systems Proposal Based on Pump Syringe and Electronically Injector Modules for Medical Application

    • Authors: C. Hamrouni
    • Year: 2020
    • Citations: 1
  • A New UWB-MIMO Multi-Antennas with High Isolation for Satellite Communications

    • Authors: C. Abdelhamid, M. Daghari, H. Sakli, C. Hamrouni
    • Year: 2019
    • Citations: 13
  • High Isolation with Metamaterial Improvement in a Compact UWB MIMO Multi-Antennas

    • Authors: C. Abdelhamid, M. Daghari, H. Sakli, C. Hamrouni
    • Year: 2019
    • Citations: 9
  • A Joint Source Channel Decoding for Image Transmission

    • Authors: S. Chaoui, O. Ouda, C. Hamrouni
    • Year: 2019
    • Citations: 8

Balamurugan C.R | Engineering | Best Researcher Award

Dr. Balamurugan C.R | Engineering | Best Researcher Award

Professor & Head/EEE at Er.Perumal Manimekalai College of Engineering, India

Dr. C.R. Balamurugan is a distinguished academician and researcher in the field of Electrical and Electronics Engineering, with extensive expertise in power electronics and industrial drives. With a strong academic background, he holds multiple degrees, including a Ph.D. in Power Electronics from Annamalai University, and an M.E. in Power Electronics and Industrial Drives from Sathyabama University. His career spans over two decades, during which he has held various teaching and administrative positions in reputed engineering institutions. Currently serving as a Professor and Head of EEE at Er.Perumal Manimekalai College of Engineering, Hosur, Dr. Balamurugan has contributed significantly to academia through research, mentorship, and curriculum development. His research interests lie in power electronics, renewable energy systems, and multilevel inverters. He has been recognized with numerous awards for his outstanding contributions to teaching and research. His ability to secure research funding and his active participation in AICTE IDEA LAB further highlight his dedication to advancing engineering education and technological innovation. With a strong commitment to knowledge dissemination, he continues to inspire students and researchers in the field of electrical and electronics engineering.

Professional Profile

Education

Dr. C.R. Balamurugan has a strong educational background in electrical and electronics engineering, with a specialization in power electronics. He earned his Ph.D. in Power Electronics from Annamalai University in 2015, demonstrating his expertise in the field. His M.E. in Power Electronics and Industrial Drives from Sathyabama University (2005) was completed with distinction, securing 80.04%. Prior to that, he completed his B.E. in Electrical and Electronics Engineering from Arunai Engineering College under Madras University in 2000, graduating with a first-class score of 68.2%. His foundational studies include a Diploma in Electrical and Electronics Engineering (DEEE) from Annai Velankanni Polytechnic, where he achieved an impressive 91.1% in 1997. Additionally, he holds an M.B.A. in Information Technology from Tamil Nadu Open University, obtained in 2009 with 65.2%. His diverse educational qualifications equip him with technical, managerial, and research skills essential for leadership roles in academia and industry.

Professional Experience

Dr. C.R. Balamurugan has an extensive career in academia, spanning over two decades. He is currently a Professor and Head of the EEE department at Er.Perumal Manimekalai College of Engineering, Hosur, a position he has held since November 2024. Previously, he served as a Professor and Head of the ECE department at the same institution from September 2023 to November 2024. His experience includes working as a Professor at Er.Perumal Manimekalai College of Engineering (2022–2023), and as a Professor and Head at Tagore Institute of Engineering and Technology, Salem (2022). He has also held teaching positions at Annamalaiyar Engineering College, Polur, and Karpagam College of Engineering, Coimbatore, where he served as a Professor and Head from 2018 to 2021. His early career includes roles as Assistant and Associate Professor at Arunai Engineering College (2005–2017) and Lecturer at Sri Jayaram Engineering College (2002–2003). His leadership in academic institutions highlights his expertise in teaching, research, and departmental management.

Research Interests

Dr. C.R. Balamurugan’s research primarily focuses on power electronics, with specific interests in multilevel inverters, renewable energy systems, and power electronics applications in industrial drives. His work in these areas has contributed significantly to improving efficiency and performance in electrical power systems. He is particularly interested in the development of advanced inverter topologies, motor control techniques, and energy-efficient power conversion technologies. His research also extends to AI-driven solutions for optimizing power electronics applications, grid integration of renewable energy sources, and fault diagnostics in electrical systems. Dr. Balamurugan actively collaborates with fellow researchers and industries to implement cutting-edge innovations in power electronics. His dedication to research has led to several funded projects, conference presentations, and journal publications in reputed platforms such as Scopus and Web of Science.

Research Skills

Dr. C.R. Balamurugan possesses a diverse set of research skills, enabling him to excel in both theoretical and experimental studies. His expertise includes power electronics circuit design, multilevel inverter development, and simulation using MATLAB/Simulink. He is proficient in hardware implementation of power converters, motor control systems, and renewable energy integration. Additionally, he has experience in AI-based optimization techniques for power electronics applications. His ability to conduct experimental validation and performance analysis of power electronic systems sets him apart as a researcher. He has also been successful in securing research grants and managing funded projects. His skills extend to technical writing, where he has authored numerous research papers published in indexed journals. Furthermore, he actively mentors students and research scholars, guiding them in advanced electrical engineering research and project development.

Awards and Honors

Dr. C.R. Balamurugan has received numerous awards in recognition of his excellence in teaching and research. Some of his notable achievements include the “Best Faculty Advisor Award” from the Institute of Engineers, India (2023), and the “Active Young Researcher Award” from Conference World (2018). He has secured multiple “Best Faculty Awards” from Arunai Engineering College for outstanding academic performance between 2006 and 2017. Additionally, he has received cash prizes for contributions to digital content development at Karpagam College of Engineering. His research excellence has been acknowledged with the “Best Paper Award” for his work on multilevel inverters. Furthermore, he has successfully secured research funding, including Rs. 10,94,118 from AICTE for the modernization of the Power Electronics lab (2020-2021) and Rs. 7,500 from the Tamil Nadu State Council for Science and Technology (2023-2024). His role as a faculty coordinator for AICTE IDEA LAB further demonstrates his leadership in academic and research activities.

Conclusion

Dr. C.R. Balamurugan’s illustrious career in academia and research stands as a testament to his expertise, dedication, and contributions to the field of electrical and electronics engineering. With over two decades of experience, he has played a crucial role in mentoring students, leading research initiatives, and managing academic departments. His extensive work in power electronics, particularly in multilevel inverters and renewable energy systems, has significantly advanced knowledge in the field. Recognized with multiple awards and research grants, he continues to push the boundaries of innovation in engineering education and research. As a Professor and Head of the EEE department, he remains committed to fostering a culture of excellence in teaching and research. His passion for technology and academic leadership ensures that he remains a driving force in the advancement of electrical and electronics engineering, shaping the next generation of engineers and researchers.

Publication Top Notes

  • “A Review on Modulation Strategies of Multilevel Inverter”

    • Authors: C.R. Balamurugan, S.P. Natarajan, R. Bensraj, B. Shanthi
    • Journal: Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
    • Year: 2016
    • Citations: 35
  • “Performance Evaluation of Multi Carrier Based PWM Techniques for Single Phase Five Level H-Bridge Type FCMLI”

    • Authors: E. Sambath, S.P. Natarajan, C.R. Balamurugan
    • Journal: IOSR Journal of Engineering
    • Year: 2012
    • Citations: 33
  • “Development of Raspberry Pi and IoT Based Monitoring and Controlling Devices for Agriculture”

    • Authors: C. Balamurugan, R. Satheesh
    • Journal: Journal of Social, Technological and Environmental Science
    • Year: 2017
    • Citations: 27
  • “Three Area Power System Load Frequency Control Using Fuzzy Logic Controller”

    • Author: C.R. Balamurugan
    • Journal: International Journal of Applied Power Engineering (IJAPE)
    • Year: 2018
    • Citations: 25
  • “Investigations on Three Phase Five Level Diode Clamped Multilevel Inverter”

    • Authors: C.R. Balamurugan, S.P. Natarajan, R. Bensraj
    • Journal: International Journal of Modern Engineering Research
    • Year: 2012
    • Citations: 24
  • “Comparative Analysis of Various Z-Source Based Five Level Cascaded H-Bridge Multilevel Inverter”

    • Authors: C.R. Balamurugan, K. Vijayalakshmi
    • Journal: Bulletin of Electrical Engineering and Informatics
    • Year: 2018
    • Citations: 16
  • “Automatic Railway Gate Control System Using 8051 Microcontroller”

    • Authors: C.R. Balamurugan, P. Vijayshankarganth, R. Alagarraja, V.E. Subramanian
    • Journal: International Journal of ChemTech Research
    • Year: 2018
    • Citations: 15
  • “A Review on Various Multilevel Inverter Topologies”

    • Authors: C.R. Balamurugan, S.P. Natarajan, M. Arumugam
    • Journal: Global Journal of Advanced Research
    • Year: 2015
    • Citations: 12
  • “Development of Fuzzy Logic Control for Paralleled Positive Output Elementary Luo Converters”

    • Authors: R. Kayalvizhi, S.P. Natarajan, S. Anbumalar
    • Conference: 1st IEEE Conference on Industrial Electronics and Applications
    • Year: 2006
    • Citations: 10
  • “A New Modified Hybrid H-Bridge Multilevel Inverter Using Less Number of Switches”

    • Authors: C.R. Balamurugan, S.P. Natarajan, V. Vidhya
    • Conference: International Conference on Computation of Power, Energy, Information and Communication
    • Year: 2013
    • Citations: 9

Reza SojoudiZadeh | Engineering | Best Researcher Award

Assist. Prof. Dr. Reza SojoudiZadeh | Engineering | Best Researcher Award

Assistant Professor at Department of Civil Engineering, Mahabad Branch, Islamic Azad University, Mahabad, Iran

Dr. Reza Sojoudi Zadeh is an Associate Professor in the Department of Civil Engineering at Mahabad Branch, Islamic Azad University, Iran. His research focuses on structural optimization, seismic performance of buildings, and concrete technology. He has published extensively in high-impact journals, contributing to advancements in soft computing techniques, metaheuristic optimization, and earthquake-resistant structures. With a strong academic background, he teaches both undergraduate and graduate courses, specializing in finite element analysis, structural optimization, and reinforced concrete structures. His expertise bridges the gap between theoretical research and practical engineering applications, making significant contributions to civil engineering.

Professional Profile 

Education

Dr. Sojoudi Zadeh earned his Ph.D. in Civil Engineering (Structural Engineering) from Urmia University, Iran (2014-2018), where he focused on seismic performance-based life cycle cost optimization of steel moment frames using soft computing techniques. He completed his M.Sc. in Structural Engineering from Tabriz University (2000-2002), working on dynamic soil-structure interaction using SAP2000 software. His B.Sc. in Civil Engineering (1996-2000) from Tabriz University laid the foundation for his expertise in structural analysis and design.

Professional Experience

Dr. Sojoudi Zadeh is an Associate Professor at Islamic Azad University, Mahabad Branch, where he has been actively involved in research, teaching, and mentoring students. His academic career spans over two decades, during which he has taught undergraduate and postgraduate courses in statics, reinforced concrete design, structural optimization, and finite element analysis. He has authored numerous peer-reviewed research papers and collaborated on studies focusing on structural performance, seismic resilience, and advanced optimization algorithms. His contributions extend to engineering software applications and innovative design methodologies for sustainable and resilient structures.

Research Interest

Dr. Reza Sojoudi Zadeh is an Associate Professor in the Department of Civil Engineering at Mahabad Branch, Islamic Azad University, Iran. His research focuses on structural optimization, seismic performance of buildings, and concrete technology. He has published extensively in high-impact journals, contributing to advancements in soft computing techniques, metaheuristic optimization, and earthquake-resistant structures. With a strong academic background, he teaches both undergraduate and graduate courses, specializing in finite element analysis, structural optimization, and reinforced concrete structures. His expertise bridges the gap between theoretical research and practical engineering applications, making significant contributions to civil engineering.

Awards and Honors

Dr. Sojoudi Zadeh has received recognition for his research contributions in structural engineering and optimization methodologies. His published works in high-impact international journals have been widely cited, earning him academic distinction. Additionally, he has played a key role in supervising and mentoring research students, further solidifying his reputation as an expert in seismic safety and structural analysis.

Research Skills

Dr. Sojoudi Zadeh possesses expertise in finite element analysis, structural modeling, and computational optimization. He is proficient in using engineering software such as SAP2000, ETABS, ANSYS, and MATLAB for structural simulations and performance evaluations. His skills in metaheuristic algorithms, AI-based structural optimization, and seismic design methodologies allow him to develop efficient, cost-effective, and safe structural solutions. Additionally, he has strong analytical and problem-solving skills, enabling him to conduct data-driven research and experimental validations in civil and structural engineering.

Conclusion

Dr. Reza Sojoudi Zadeh is a strong candidate for the Best Researcher Award, particularly in the domain of structural optimization and seismic engineering. His work in metaheuristic optimization, AI applications in structural engineering, and earthquake-resistant structures is significant. However, to strengthen his application, he could focus on increasing research impact (citations, collaborations), engaging in applied research, and obtaining high-profile recognitions.

Publications Top Noted

  • Title: Modified Sine-Cosine Algorithm for Sizing Optimization of Truss Structures with Discrete Design Variables

    • Authors: S. Gholizadeh, R. Sojoudizadeh
    • Year: 2019
    • Citations: 32
  • Title: Shape and Size Optimization of Truss Structure by Means of Improved Artificial Rabbits Optimization Algorithm

    • Authors: S. L. SeyedOskouei, R. Sojoudizadeh, R. Milanchian, H. Azizian
    • Year: 2024
    • Citations: 8
  • Title: Elite Particles Method in Discrete Metaheuristic Optimization of Structures

    • Authors: R. Sojoudizadeh, S. Gholizadeh
    • Year: 2022
    • Citations: 2
  • Title: Sizing Optimization of Truss Structures with Discrete Design Variables Using Combined PSO Algorithm with Special Particles Method

    • Authors: A. Gheibi, R. Sojoudizadeh, H. Azizian, M. Gheibi
    • Year: 2024
    • Citations: 1
  • Title: Seismic Optimization of Steel Mega‐Braced Frame With Improved Prairie Dog Metaheuristic Optimization Algorithm

    • Authors: T. PayamiFar, R. Sojoudizadeh, H. Azizian, L. Rahimi
    • Year: 2025
  • Title: Seismic Behavior of Concrete Shear Wall with Lap-Spliced Rebar and Sleeve

    • Authors: J. Hasankhani, E. Shafei, R. Sojoudizadeh, S. J. Ghaderi
    • Year: 2024
  • Title: Effect of Configuration Angle on Seismic Performance of Tall Steel Diagrid Frames

    • Authors: R. Sojoudizadeh, R. Milanchian, H. Azizian, A. Beirami Shahabi
    • Year: 2024
  • Title: Enhancing Seismic Performance of Lap-Spliced Concrete Shear Walls by Rebar-Debonding

    • Authors: J. Hasankhani, E. Shafei, R. Sojoudizadeh, S. J. Ghaderi
    • Year: 2024
  • Title: روش ذرات نخبه در بهینه سازی گسسته سازه ها‎ (Elite Particles Method in Discrete Optimization of Structures)

    • Authors: سجودی زاده, قلی زاده قلعه عزیز‎ (R. Sojoudizadeh, S. Gholizadeh)
    • Year: 2022

Gil Ju Lee | Engineering | Best Researcher Award

Prof. Gil Ju Lee | Engineering | Best Researcher Award

Associate Professor at Pusan National University, South Korea

Dr. Gil Ju Lee is an accomplished researcher and Associate Professor at the School of Electrical and Electronics Engineering, Pusan National University (PNU), South Korea. His expertise lies in novel photonic devices, advanced optoelectronics, bio-inspired imaging systems, and semiconductor nanowires. With a strong background in next-generation imaging, radiative cooling, and multifunctional nanophotonic devices, he has contributed significantly to cutting-edge technological advancements. Dr. Lee has received numerous prestigious awards, including the Outstanding Researcher Award from PNU (2022-2024) and the Samsung HumanTech Thesis Award. His research has been widely published in high-impact journals such as Nature Communications, Advanced Energy Materials, and Scientific Robotics. As the principal investigator of multiple national research projects, he continues to drive innovation in optoelectronics and nanophotonics.

Professional Profile 

Education

Dr. Gil Ju Lee earned his Integrated M.S./Ph.D. degree from the Gwangju Institute of Science and Technology (GIST), Korea, in February 2021, under the prestigious GIST Presidential Fellowship. His research at GIST focused on cutting-edge photonic and optoelectronic technologies under the mentorship of Prof. Young Min Song. Prior to this, he completed his Bachelor of Science (Summa Cum Laude) in Electronics Engineering from Pusan National University, Korea, in February 2016. His early academic career was marked by exceptional performance, earning him several scholarships and research awards. His education has provided him with a solid foundation in electrical engineering, photonic systems, and nanotechnology, enabling him to excel in both theoretical and applied research.

Professional Experience

Dr. Lee has been an Associate Professor at Pusan National University since March 2025, following his tenure as an Assistant Professor from September 2021 to February 2025. Prior to joining PNU, he worked as a Postdoctoral Research Associate at the School of Electrical Engineering and Computer Science, GIST, Korea, from March to August 2021. Throughout his career, Dr. Lee has led groundbreaking research in optoelectronics, nanophotonics, and imaging devices. His research contributions have been supported by national and international funding agencies, and he has collaborated with leading academic and industrial institutions. His extensive research experience, combined with his leadership in high-impact projects, makes him a key figure in advancing innovative technologies in photonics and electronics.

Research Interests

Dr. Gil Ju Lee’s research focuses on cutting-edge advancements in optoelectronics, photonic devices, and nanophotonics. His expertise spans bio-inspired imaging systems, semiconductor nanowires, radiative cooling, and multifunctional nanophotonic devices. He is particularly interested in developing next-generation imaging and sensing technologies, leveraging nanostructured materials for energy-efficient optical systems. His research integrates machine learning with photonic device engineering to enhance imaging performance and energy efficiency. Dr. Lee also explores novel applications in metasurfaces, perovskite optoelectronics, and smart photonic materials to revolutionize future electronic and photonic systems.

Awards and Honors

Dr. Lee has received numerous accolades for his contributions to science and technology. Notably, he was honored with the Outstanding Researcher Award from Pusan National University (2022-2024) and the prestigious Samsung HumanTech Thesis Award. He has also been recognized with multiple Best Paper Awards from international conferences in photonics and optoelectronics. His research excellence has secured funding from leading national and international agencies, further solidifying his reputation as a pioneer in advanced photonic technologies.

Research Skills

Dr. Lee possesses strong expertise in nanofabrication, optoelectronic device characterization, computational photonics, and semiconductor processing. He has extensive experience in designing and developing photonic metasurfaces, perovskite-based optoelectronic systems, and bio-inspired imaging technologies. His technical skills include finite-difference time-domain (FDTD) simulations, COMSOL Multiphysics, and deep learning-based image analysis. Additionally, he is proficient in fabrication techniques such as electron-beam lithography, atomic layer deposition, and nanoimprinting. His ability to integrate theoretical modeling with experimental validation has been instrumental in advancing high-performance nanophotonic devices for diverse applications.

Conclusion

Dr. Gil Ju Lee is a highly qualified candidate for the Best Researcher Award. His extensive contributions to optoelectronics, bio-inspired imaging, and photonic device research, coupled with high-impact publications and substantial funding, make him a strong contender. While he already has significant national recognition, expanding international collaborations, industry partnerships, and the commercialization of his work would further enhance his profile.

Publications Top Noted

  • Human eye-inspired soft optoelectronic device using high-density MoS₂-graphene curved image sensor array
    Authors: C Choi, MK Choi, S Liu, M Kim, OK Park, C Im, J Kim, X Qin, GJ Lee, …
    Year: 2017
    Citations: 520

  • Curved neuromorphic image sensor array using a MoS₂-organic heterostructure inspired by the human visual recognition system
    Authors: C Choi, J Leem, M Kim, A Taqieddin, C Cho, KW Cho, GJ Lee, H Seung, …
    Year: 2020
    Citations: 263

  • Bioinspired artificial eyes: Optic components, digital cameras, and visual prostheses
    Authors: GJ Lee†, C Choi†, DH Kim, YM Song
    Year: 2018
    Citations: 251

  • Colored, daytime radiative coolers with thin‐film resonators for aesthetic purposes
    Authors: GJ Lee, YJ Kim, HM Kim, YJ Yoo, YM Song
    Year: 2018
    Citations: 215

  • Wearable force touch sensor array using a flexible and transparent electrode
    Authors: JK Song, D Son, J Kim, YJ Yoo, GJ Lee, L Wang, MK Choi, J Yang, M Lee, …
    Year: 2017
    Citations: 194

  • A Janus emitter for passive heat release from enclosures
    Authors: SY Heo†, GJ Lee†, DH Kim, YJ Kim, S Ishii, MS Kim, TJ Seok, BJ Lee, …
    Year: 2020
    Citations: 177

  • An aquatic-vision-inspired camera based on a monocentric lens and a silicon nanorod photodiode array
    Authors: MS Kim†, GJ Lee†, C Choi†, MS Kim†, M Lee, S Liu, KW Cho, HM Kim, …
    Year: 2020
    Citations: 131

  • Bio‐inspired artificial vision and neuromorphic image processing devices
    Authors: MS Kim, MS Kim, GJ Lee, SH Sunwoo, S Chang, YM Song, DH Kim
    Year: 2022
    Citations: 104

  • Revisiting silk: a lens-free optical physical unclonable function
    Authors: MS Kim†, GJ Lee†, JW Leem, S Choi, YL Kim, YM Song
    Year: 2022
    Citations: 93

  • Outdoor‐Useable, Wireless/Battery‐Free Patch‐Type Tissue Oximeter with Radiative Cooling
    Authors: MH Kang†, GJ Lee†, JH Lee, MS Kim, Z Yan, JW Jeong, KI Jang, …
    Year: 2021
    Citations: 81

  • An amphibious artificial vision system with a panoramic visual field
    Authors: M Lee†, GJ Lee†, HJ Jang†, E Joh, H Cho, MS Kim, HM Kim, KM Kang, …
    Year: 2022
    Citations: 66

  • Efficient light absorption by GaN truncated nanocones for high-performance water splitting applications
    Authors: YJ Kim, GJ Lee, S Kim, JW Min, SY Jeong, YJ Yoo, S Lee, YM Song
    Year: 2018
    Citations: 64

Daniel Akerele | Engineering | Best Researcher Award

Mr. Daniel Akerele | Engineering | Best Researcher Award

Research Assistant at University of Washington, United States

Daniel D. Akerele is a Ph.D. candidate in Construction Management at the University of Washington, specializing in rapid-set materials for concrete pavement repair, sustainability, and AI-driven material science. With an extensive academic background, including an MSc in Civil Engineering and a Graduate Certificate in Construction Project Management from Columbia University, he has demonstrated expertise in material optimization, performance evaluation, and infrastructure sustainability. His research contributions include several peer-reviewed publications and journal reviews. Beyond academia, he has significant industry experience as a Project Engineer at Turner Construction and a Research Assistant at the Center for Education and Research in Construction Lab. Daniel has also been recognized with multiple awards, including the College of Built Environment’s Top Scholar Award and PNWCMAA Student Scholarship. A dedicated educator, he mentors students and serves as a reviewer for esteemed journals. His leadership, technical acumen, and research impact make him a strong candidate for the Best Researcher Award.

Professional Profile 

Education

Daniel D. Akerele has a strong academic background in civil engineering and construction management. He is currently pursuing a Ph.D. in Construction Management at the University of Washington, focusing on rapid-set materials for concrete pavement repair, sustainability, and AI-driven material science. He earned his Master of Science in Civil Engineering from Columbia University, where he also obtained a Graduate Certificate in Construction Project Management, demonstrating his expertise in both technical and managerial aspects of the field. His academic journey is marked by excellence, with a strong emphasis on material optimization, performance evaluation, and infrastructure sustainability. Throughout his studies, Daniel has been actively involved in research, contributing to peer-reviewed publications and journal reviews. His dedication to education is further reflected in his mentorship of students and leadership roles in academic and professional organizations. His diverse and multidisciplinary educational background positions him as a leading researcher in construction materials and engineering.

Professional Experience

Daniel D. Akerele has extensive professional experience in civil engineering, construction management, and material science. He has worked on various high-profile infrastructure projects, specializing in concrete pavement repair, sustainable materials, and AI-driven construction techniques. As a researcher at the University of Washington, he has contributed significantly to developing rapid-set materials for concrete repairs, enhancing durability and efficiency in infrastructure maintenance. His previous roles include project management and engineering positions where he oversaw construction planning, quality control, and material performance assessments. Daniel has also collaborated with industry leaders and government agencies, applying his expertise to real-world construction challenges. In addition to his technical work, he is an active mentor and peer reviewer, supporting academic and professional development in his field. His combination of research excellence and hands-on industry experience makes him a respected expert in construction materials and infrastructure sustainability.

Research Interest

Daniel D. Akerele’s research interests lie at the intersection of civil engineering, material science, and advanced construction technologies. His work focuses on developing sustainable and high-performance construction materials, with a particular emphasis on rapid-setting concrete for infrastructure repairs. He is passionate about exploring innovative solutions to enhance the durability, resilience, and sustainability of construction materials, integrating nanotechnology, AI-driven material optimization, and green construction practices. His research also delves into pavement engineering, investigating ways to improve road durability through advanced material formulations and predictive modeling. Daniel is committed to bridging the gap between academic research and industry applications, working closely with government agencies and private sector stakeholders to implement his findings in real-world construction projects. Through his research, he aims to contribute to the development of smart, eco-friendly infrastructure solutions that align with global sustainability goals while improving efficiency and cost-effectiveness in the construction industry.

Award and Honor

Daniel D. Akerele has received numerous awards and honors in recognition of his outstanding contributions to civil engineering and materials science. His excellence in research and innovation has earned him prestigious academic and professional accolades, including best paper awards at international engineering conferences. He has been honored by professional organizations for his pioneering work in sustainable construction materials and pavement engineering. Daniel has also received research grants and fellowships from esteemed institutions, supporting his investigations into advanced construction technologies. His dedication to bridging academic research with industry applications has been acknowledged through awards for impactful contributions to infrastructure development. Additionally, he has been recognized as an emerging leader in engineering by various professional bodies, highlighting his commitment to advancing the field. Through these accolades, Daniel continues to inspire young researchers and professionals, reinforcing his reputation as a distinguished scholar and innovator in civil and structural engineering.

Research Skill

Daniel D. Akerele possesses exceptional research skills that have significantly contributed to advancements in civil engineering and materials science. His expertise spans experimental analysis, data interpretation, and computational modeling, enabling him to develop innovative solutions for sustainable infrastructure. He excels in laboratory testing of construction materials, utilizing advanced characterization techniques to assess performance and durability. Daniel is proficient in statistical analysis and simulation tools, allowing him to model complex engineering phenomena accurately. His ability to synthesize interdisciplinary knowledge enhances his research impact, bridging gaps between materials science, structural engineering, and environmental sustainability. He is skilled in grant writing and proposal development, securing funding for pioneering research projects. Additionally, his strong analytical thinking and problem-solving abilities make him adept at tackling engineering challenges with practical, evidence-based solutions. Through his rigorous research methodology, Daniel continues to push the boundaries of knowledge, contributing to the evolution of modern construction and engineering practices.

Conclusion

Daniel D. Akerele is a highly suitable candidate for the Best Researcher Award due to his strong research contributions, innovative applications in construction materials, leadership in academia and industry, and commitment to sustainability. Strengthening his publication record, interdisciplinary collaborations, and patent contributions would further solidify his reputation as a top-tier researcher in construction engineering and material science.

Publications Top Noted

  • Title: A study on pharmacovigilance of herbal medicines in Lagos West Senatorial District, Nigeria
    Authors: O. Awodele, A. Daniel, T.D. Popoola, E.F. Salami
    Year: 2013
    Citations: 31

  • Title: Analysis of maize value addition among entrepreneurs in Taraba State, Nigeria
    Authors: P.I. Ater, G.C. Aye, A. Daniel
    Year: 2018
    Citations: 17

  • Title: Evaluating the Impact of CO2 on Calcium SulphoAluminate (CSA) Concrete
    Authors: D.D. Akerele, F. Aguayo
    Year: 2024
    Citations: 4

  • Title: An Assessment of Saltwater Intrusion in Coastal Regions of Lagos, Nigeria
    Authors: O. Callistus, A.D. Daniel, A.O. Pelumi, O. Somtobe, O. Kunle, O.S. Echezona, et al.
    Year: 2024
    Citations: 4

  • Title: Assessment of Physicochemical and Bacteriological Parameters of Borehole Water: A Case Study from Lekki, Lagos, Nigeria
    Authors: D.D. Akerele, C. Obunadike, P.O. Abiodun
    Year: 2023
    Citations: 3

  • Title: Portland Limestone Cement in Concrete Pavement and Bridge Decks: Performance Evaluation and Future Directions
    Authors: D.D. Akerele, F. Aguayo, L. Wu
    Year: 2025
    Citations: Not available

  • Title: Effect of Geotextile on Lime Stabilized Lateritic Soils under Unsoaked Condition
    Authors: D.D. Akerele, P. Aduwenye
    Year: 2023
    Citations: Not available

  • Title: Solving Lime Stabilization Issues Using Woven Geotextile in Soaked Conditions
    Authors: D.D. Akerele
    Year: 2023
    Citations: Not available

Anuj Kumar | Engineering | Best Researcher Award

Mr. Anuj Kumar | Engineering | Best Researcher Award

Assistant Professor at Management Education & Research Institute, Janakpuri, India

Anuj Kumar is an accomplished academic and researcher in Computer Science & Engineering, currently pursuing a Ph.D. in Image Processing at AKTU, Lucknow. With over a decade of teaching experience at institutions like Guru Gobind Singh Indraprastha University and IIMT College of Engineering, he has significantly contributed to education and research. His expertise spans artificial intelligence, computer graphics, and data structures, complemented by proficiency in programming languages such as Python, C++, and MATLAB. He has published research papers in Scopus-indexed journals, IEEE Explorer, and Elsevier, along with a book chapter on distributed artificial intelligence. Recognized for his contributions, he was awarded at the Smart India Hackathon 2018 and qualified GATE 2012 with an 85.04 percentile. Anuj is actively involved in academic leadership, faculty development, and university assessments. With a commitment to innovation and interdisciplinary research, he aspires to advance computational methodologies and industrial applications in artificial intelligence and image processing.

Professional Profile 

Education

Anuj Kumar has a strong academic background in Computer Science & Engineering. He is currently pursuing a Ph.D. in Image Processing from Dr. A.P.J. Abdul Kalam Technical University (AKTU), Lucknow, Uttar Pradesh, demonstrating his commitment to advanced research. He earned his M.Tech in Computer Science & Engineering from Guru Gobind Singh Indraprastha University, Delhi, in 2014, securing a first division. His undergraduate studies include a B.Tech in Computer Science & Engineering from the Institution of Electronics & Telecommunication Engineers (IETE), Delhi, in 2011, also with first-division honors. Additionally, he holds a Three-Year Diploma in Computer Science & Engineering from IETE, Delhi (2006). His early education was completed under the U.P. Board, where he finished 10th grade (2000) and 12th grade (2003) in the second division. His educational journey, enriched with technical certifications like MCAD (Microsoft Certified Application Developer) in 2006, has laid a strong foundation for his expertise in computing and research.

Professional Experience

Anuj Kumar has extensive academic experience as an Assistant Professor in Computer Science & Engineering, with a teaching career spanning over a decade across prestigious institutions. Since July 2023, he has been serving at MERI College of Engineering and Technology, Haryana. Prior to this, he worked at IIMT College of Engineering, Greater Noida (2022–2023) and Greater Noida Institute of Technology, GGSIPU (2018–2022), where he contributed to curriculum development and research initiatives. He also held academic positions at USIC&T, Guru Gobind Singh Indraprastha University (2017–2018) and Ram-Eesh Institute of Engineering & Technology (2017). Earlier in his career, he served at Baba Saheb Ambedkar Institute of Technology & Management (2014–2016) and The Institution of Electronics & Telecommunication Engineers, Delhi (2011–2012). His vast experience includes mentoring students, conducting faculty development programs, and leading academic audits, showcasing his commitment to education, research, and institutional development.

Research Interest

Anuj Kumar’s research interests lie at the intersection of computer vision, image processing, artificial intelligence, and computational methods. Currently pursuing a Ph.D. in Image Processing, he focuses on developing advanced techniques for image enhancement, noise removal, and forgery detection using deep learning algorithms. His expertise extends to computer graphics, formal language automata, database management systems (DBMS), data structures, and discrete mathematics, which serve as the foundation for his research innovations. He has actively contributed to AI-driven industrial systems, biodiversity assessment using hyperspectral imaging, and disruptive innovations in tech-business analytics. His work has been published in Scopus-indexed journals, IEEE conference proceedings, and reputed international journals, reflecting the impact of his research. Additionally, he explores the applications of distributed artificial intelligence (DAI) for document retrieval, emphasizing intelligent data processing techniques. His dedication to cutting-edge research strengthens his role as a mentor and academician in the field of computer science and engineering.

Award and Honor

Anuj Kumar has been recognized for his academic excellence and research contributions through various awards and honors. He was awarded in the Smart India Hackathon 2018, a prestigious national-level competition promoting innovation and problem-solving skills. Demonstrating strong technical acumen, he qualified GATE 2012 with an impressive 85.04 percentile and a score of 302, showcasing his expertise in computer science and engineering. His achievements extend beyond academics, as he was the runner-up in the 100m race at IETE, New Delhi, in 2005, highlighting his diverse talents. Additionally, he has played a significant role in academia as a convener of the Joint Assessment Committee (JAC) for academic audits, deputy center superintendent for examinations, and university representative in various assessment programs. His dedication to research and education is further reflected in his memberships on editorial boards and professional organizations, solidifying his reputation as a distinguished academic and researcher.

Research Skill

Anuj Kumar possesses a strong research skillset that spans multiple domains within computer science and engineering, particularly in image processing, artificial intelligence, and computational methods. His expertise in deep learning, fuzzy techniques, and hyperspectral imaging enables him to develop innovative solutions for image enhancement, noise removal, and forgery detection. He is proficient in Python, MATLAB, C++, and various database management systems (DBMS), which support his research in data analysis, automation, and intelligent computing. His ability to critically analyze complex problems, design experiments, and implement advanced algorithms has led to multiple Scopus-indexed publications, IEEE conference presentations, and book chapters. Additionally, his role in academic audits, faculty development programs, and technical training workshops demonstrates his leadership in research and education. His strong analytical thinking, problem-solving capabilities, and hands-on approach to emerging technologies make him a highly skilled researcher in the field of computer vision and artificial intelligence.

Conclusion

Anuj Kumar has a strong academic foundation, technical expertise, and a growing research portfolio in computer science and engineering. His contributions to image processing, artificial intelligence, and industrial automation position him as a promising candidate for the Best Researcher Award. However, enhancing high-impact publications, research collaborations, and funding contributions would further strengthen his profile for this recognition.

Publications Top Noted

  • P., Jaidka, Preeti, P., Upadhyay, Prashant, A., Kumar, Aman, A.S., Kumar, Anuj Shiva, S.P., Yadav, Satya Prakash (2024). Transforming Coconut Farming with Deep Learning Disease Detection. Evergreen. Citations: 0

  • D., Sharma, Deepak, A.S., Kumar, Anuj Shiva, N., Tyagi, Nitin, S.S., Chavan, Sunil S., S.M.P., Gangadharan, Syam Machinathu Parambil (2024). Towards intelligent industrial systems: A comprehensive survey of sensor fusion techniques in IIoT. Measurement: Sensors. Citations: 3

  • S., Singh, Sandeep, B.K., Singh, B. K., A.S., Kumar, Anuj Shiva (2024). Multi-organ segmentation of organ-at-risk (OAR’s) of head and neck site using ensemble learning technique. Radiography. Citations: 3

  • R., Naz, Rahat, A.S., Kumar, Anuj Shiva (2024). Surveying Quantum-Proof Blockchain Security: The Era of Exotic Signatures. Conference Paper. Citations: 1

 

Zainab Mahdi Saleh | Engineering | Women Researcher Award

Mrs. Zainab Mahdi Saleh | Engineering | Women Researcher Award

An engineer at the Iraqi Ministry of Health at University of Babylon, Iraq

Mrs. Zainab Mahdi Saleh is an accomplished mechanical engineer specializing in thermodynamics, currently pursuing a Ph.D. at the University of Babylon. She holds a Master’s degree from the University of Wasit and has conducted significant research on energy-efficient cooling systems, publishing multiple papers on desiccant wheel performance and heat transfer enhancement. With extensive experience in mechanical systems, she has held various leadership roles in hospital infrastructure management, overseeing central cooling, generators, and medical oxygen systems. Proficient in ANSYS and other engineering software, she combines theoretical expertise with practical applications. A dedicated educator, she serves as an Assistant Lecturer and is an active member of the Iraqi Engineers Union. Her strong English proficiency and technical skills make her a valuable contributor to the field. To further enhance her impact, she aims to expand her research internationally, secure funding, and mentor young engineers, particularly women in STEM.

Professional Profile

Education

Mrs. Zainab Mahdi Saleh has a strong academic background in mechanical engineering, specializing in thermodynamics. She earned her Bachelor’s degree in Mechanical Engineering from the University of Thi Qar in 2008 and later pursued a Master’s degree in Mechanical Engineering at the University of Wasit, which she completed in 2020. Currently, she is a Ph.D. candidate at the University of Babylon, focusing on advanced research in thermodynamics. Her academic journey reflects a commitment to scientific excellence and continuous learning. Throughout her studies, she has developed expertise in energy-efficient cooling systems and heat transfer enhancement, contributing to innovative research in her field. She has also undertaken specialized courses in mechanical engineering, ANSYS software, and teaching methodologies, further strengthening her technical and instructional capabilities. Her dedication to education and research positions her as a leading figure in engineering, striving to make meaningful contributions to both academia and industry.

Professional Experience

Mrs. Zainab Mahdi Saleh has extensive professional experience in mechanical engineering, specializing in thermodynamics and energy systems. She has held various leadership positions in healthcare infrastructure management, overseeing critical mechanical systems such as central cooling, generators, and medical oxygen units. Her career began as a Maintenance Unit Supervisor at Al-Hay Health Sector in 2009, followed by roles at Al-Karama Teaching Hospital and Badra Model Health Center, where she managed mechanical and generator maintenance. She later advanced to Assistant Head of the Mechanical Division at Al-Zahraa Teaching Hospital, eventually becoming the Supervisor of both the Central Cooling and Medical Oxygen Units. In addition to her technical expertise, she serves as an Assistant Lecturer, contributing to academic research and mentoring students in mechanical engineering. Her combined experience in practical engineering applications and academia positions her as a leader in the field, bridging the gap between research and real-world industrial challenges.

Research Interest

Mrs. Zainab Mahdi Saleh’s research interests lie in the fields of thermodynamics, heat transfer enhancement, and energy-efficient cooling systems. She focuses on optimizing the performance of desiccant wheel technology to reduce latent heat loads in air conditioning systems, contributing to improved energy efficiency and sustainability. Her work also explores innovative heat transfer techniques in double-pipe heat exchangers, utilizing advanced methods such as wavy edge twisted tapes with varying twist ratios and perforated diameters to enhance thermal performance. With a strong background in both theoretical and experimental studies, she aims to develop practical solutions for industrial and environmental applications. Additionally, her expertise in mechanical systems, including medical oxygen and central cooling units, allows her to bridge the gap between research and real-world engineering challenges. By expanding her studies to include renewable energy integration, she seeks to further advance sustainable thermal management technologies for future applications.

Award and Honor

Mrs. Zainab Mahdi Saleh has earned recognition for her contributions to mechanical engineering, particularly in the field of thermodynamics and energy-efficient cooling systems. As an accomplished researcher, she has published multiple scientific papers in reputable university journals, showcasing her expertise in heat transfer enhancement and desiccant wheel technology. Her dedication to academia and research has positioned her as a respected scholar in her field. In addition to her academic achievements, she has held leadership roles in various healthcare institutions, demonstrating her ability to apply engineering principles to critical infrastructure management. Her commitment to education is evident in her role as an Assistant Lecturer, where she mentors and guides students in mechanical engineering. As a member of the Iraqi Engineers Union, she actively contributes to the engineering community. While she continues to advance her research, further recognition through national and international awards would strengthen her impact and professional standing.

Research Skill

Mrs. Zainab Mahdi Saleh possesses strong research skills in thermodynamics, heat transfer, and energy-efficient cooling systems. She excels in both theoretical and experimental research, demonstrated by her studies on desiccant wheel performance and heat exchangers. Her expertise includes conducting experimental setups, data analysis, and computational simulations using ANSYS software, enhancing the accuracy and efficiency of her findings. She is skilled in designing and optimizing mechanical systems to improve energy performance, particularly in HVAC and industrial cooling applications. Her ability to integrate engineering principles with real-world applications is evident in her research on moisture adsorption materials and innovative heat transfer techniques. Additionally, she is proficient in academic writing and has successfully published her work in university journals. Her analytical approach, problem-solving abilities, and technical expertise make her a valuable contributor to the field. As she advances in her Ph.D. research, her skills continue to evolve, driving innovation in mechanical engineering.

Conclusion

Zainab Mahdi Saleh is a strong candidate for the Women Researcher Award, given her academic achievements, research contributions, technical expertise, and leadership in the field of mechanical engineering. Her work on energy-efficient cooling and heat transfer enhancement is highly relevant to sustainability and industrial advancements.

To further enhance her candidacy, she could focus on expanding her research to international platforms, securing research funding, and mentoring the next generation of engineers, particularly women in STEM. Overall, her profile reflects dedication, technical excellence, and leadership, making her a deserving contender for this prestigious award.

Publications Top Noted

  • Title: “Theoretical Performance of Silica Gel Desiccant Wheel”

    • Authors: ZM Salih, ADM Hassan, AM Al-Dabagh
    • Journal: Wasit Journal of Engineering Sciences, Volume 7, Issue 3, Pages 66-74
    • Year: 2019
    • Citations: 1
  • Title: “The Experimentally Studying of Solid Desiccant Wheel Performance Combined with the System of Air Conditioning”

    • Authors: ZM Salih, ADM Hassen, AM Al-Dabagh
    • Journal: Journal of University of Babylon for Engineering Sciences, Pages 50-59
    • Year: 2019
    • Citations: 1