Yong Xu | Engineering | Research Excellence Award

Mr. Yong Xu | Engineering | Research Excellence Award

Associate Researcher | Aerospace Technology Institute of CARDC | China

Dr. Yong Xu is a researcher specializing in intelligent sensing, autonomous systems, and advanced signal processing, with a particular focus on drone vision systems and radar-based environmental perception. His research integrates computer vision, machine learning, and adaptive signal normalization techniques to enhance the reliability, efficiency, and resilience of autonomous aerial and maritime systems in complex real-world environments. Dr. Xu has authored several high-impact publications, including An Air-to-Ground Visual Target Persistent Tracking Framework for Swarm Drones (Automation) and Adaptive Clustering-Based Marine Radar Sea Clutter Normalization (Journal of Sensors), showcasing his expertise in persistent target tracking, swarm coordination, and environmental noise reduction. These works demonstrate his ability to bridge theoretical innovation with practical engineering solutions, improving both sensor performance and system-level autonomy. Throughout his career, Dr. Xu has collaborated extensively with interdisciplinary teams, including researchers such as Shuai Guo, Hongtao Yan, An Wang, Tao Jia, Dong Cao, Pengyu Guo, Yue Ma, Tian Yao, and Jaime Lloret, highlighting his strong engagement in international and cross-institutional research. His contributions support real-world applications in autonomous drone navigation, maritime surveillance, environmental monitoring, and defense technologies, promoting safer and more efficient operational systems. By advancing methodologies for persistent tracking and adaptive radar signal processing, Dr. Xu’s research contributes significantly to the fields of robotics, unmanned systems, and intelligent sensing, offering societal benefits in areas such as public safety, disaster monitoring, and infrastructure protection, while reinforcing the development of next-generation autonomous technologies on a global scale.

Profile: ORCID

Featured Publications

1. Xu, Y., Guo, S., Yan, H., Wang, A., Ma, Y., Yao, T., & Song, H. (2025). An Air‑to‑Ground Visual Target Persistent Tracking Framework for Swarm Drones. Automation, 6(4), 81. https://doi.org/10.3390/automation6040081 MDPI

2. Xu, Y., Jia, T., Cao, D., Guo, P., Ma, Y., & Yan, H. (2021). Adaptive Clustering‑Based Marine Radar Sea Clutter Normalization. Journal of Sensors, 2021, Article 2938251 (11 pages). https://doi.org/10.1155/2021/2938251

Sümeyye Sınır | Engineering | Research Excellence Award

Dr. Sümeyye Sınır | Engineering | Research Excellence Award

Lecturer | İzmir Katip Çelebi University | Turkey

Dr. Sümeyye Sınır is a researcher at İzmir Kâtip Çelebi University in Izmir, Turkey, specializing in applied mechanics, nonlinear systems, and fractional calculus, with a focus on developing innovative mathematical and computational methods for analyzing complex dynamical behaviors. She has authored 3 peer-reviewed publications, which have collectively received 63 citations, and holds an h-index of 2, reflecting her emerging influence in the field of applied mechanics and nonlinear dynamics. Among her notable contributions is the development of a general solution procedure for nonlinear single-degree-of-freedom systems incorporating fractional derivatives, providing critical insights for engineering applications, physics modeling, and mechanical system simulations. Dr. Sınır actively collaborates with colleagues across mathematics, engineering, and computational mechanics, demonstrating a commitment to interdisciplinary research and advancing methodologies that bridge theoretical developments with practical applications. Her work enhances the understanding and prediction of complex nonlinear behaviors, supporting innovations in structural engineering, robotics, energy systems, and other technologically relevant domains. Through her research, she contributes to improved simulation accuracy, efficient system design, and the development of tools that address real-world engineering challenges, translating theoretical insights into tangible societal benefits. Committed to scientific rigor, innovation, and collaboration, Dr. Sınır continues to expand her research portfolio, strengthen academic partnerships, and advance methodologies in nonlinear mechanics, promoting both the theoretical foundation and applied solutions in engineering and physics, while fostering technological progress and contributing to the broader scientific community through impactful research and interdisciplinary engagement.

Profiles: Google Scholar | Scopus | ResearchGate

Featured Publications

1. Sınır, S., Çevik, M., & Sınır, B. G. (2018). Nonlinear free and forced vibration analyses of axially functionally graded Euler-Bernoulli beams with non-uniform cross-section. Composites Part B: Engineering, 148, 123–131. (Cited by 76)

2. Sınır, S., Yıldız, B., & Sınır, B. G. (2021). Approximate solutions of nonlinear pendulum with fractional damping. In 5th International Students Science Congress Proceedings Book (p. 295). (Cited by 3)

3. Sınır, S., & Çevik, M. (2013). Taylor matrix solution of Euler-Bernoulli beam equation subjected to static loads. In Proceedings of the Fourth International Conference on Mathematical and …. (Cited by 3)

4. Sınır, S., Yıldız, B., & Sınır, B. G. (2025). A general solution procedure for nonlinear single degree of freedom systems including fractional derivatives. International Journal of Non-Linear Mechanics, 169, 104966. (Cited by 2)

5. Küzün, D., Yıldız, B., & Sınır, S. (2023). Euler-Bernoulli beam with fractional viscoelastic boundary conditions. 18. UBAK Kongresi. (Cited by 1)