Guangxu Zhang | Engineering | Best Researcher Award

Dr.Guangxu Zhang | Engineering | Best Researcher Award

Postdoctoral researcher at Tongji University, China

Dr. Guangxu Zhang is a highly accomplished researcher specializing in battery thermal safety, with a strong background in materials science and vehicle engineering. He has made significant contributions to understanding battery thermal failure mechanisms, aged battery safety, and non-destructive assessment methods. With over 40 academic publications, including 20 SCI/EI-indexed papers as the first or corresponding author, his research has been featured in high-impact journals like Nano Energy, Renewable & Sustainable Energy Reviews, and Journal of Power Sources. His work has been cited 1,116 times in Scopus, achieving an h-index of 18, and he holds 26 invention patents, with 11 granted. Recognized for his excellence, he has received multiple prestigious awards, including the Young Scholar Award at the 6th Electric Vehicle and Battery Safety Conference (2024), the Best Report Award at the International Forum on New Energy Science (2023), and National Scholarships for Doctoral Students (2021, 2022). Currently a postdoctoral researcher at Tongji University, Dr. Zhang continues to push the boundaries of battery safety research, with potential for greater global collaboration and commercialization of his innovations. His outstanding contributions position him as a strong candidate for the Best Researcher Award.

Professional Profile

Education

Dr. Guangxu Zhang has a strong academic background in vehicle engineering and materials science. He earned his Bachelor’s degree in Vehicle Engineering from Hunan University (2014-2018), where he built a foundation in mechanical and automotive studies. He then pursued a Ph.D. in Vehicle Engineering at Tongji University (2018-2023), focusing on battery thermal safety and energy storage systems. Currently, he is a Postdoctoral Researcher at the School of Materials Science and Engineering, Tongji University (2023–present), where he continues his research on battery safety, thermal failure mechanisms, and innovative evaluation methods. His educational journey reflects a seamless integration of mechanical engineering, energy storage technology, and materials science, making him a well-rounded expert in his field.

Professional Experience

Dr. Guangxu Zhang is currently a Postdoctoral Researcher at the School of Materials Science and Engineering, Tongji University (2023–present), where he focuses on battery thermal safety, failure mechanisms, and advanced evaluation methods. His professional journey began with his doctoral research at Tongji University’s School of Automotive Studies (2018-2023), where he specialized in vehicle engineering with an emphasis on energy storage and lithium-ion battery safety. His work has led to significant advancements in battery thermal management, safety assessments, and aging mechanisms, resulting in over 40 high-impact publications and 26 patents. Through his research, he has contributed to the development of safer and more efficient battery technologies for electric vehicles and renewable energy applications. His expertise bridges the fields of materials science, mechanical engineering, and energy storage, positioning him as a key researcher in the field of battery safety and reliability.

Research Interest

Dr. Guangxu Zhang’s research interests lie in the field of battery thermal safety, failure mechanisms, and energy storage reliability, with a focus on advancing the safety, performance, and longevity of lithium-ion batteries. His work explores battery thermal failure mechanisms, thermal safety evolution in aged batteries, and non-destructive assessment techniques to enhance the safety of energy storage systems, particularly for electric vehicles and renewable energy applications. He is dedicated to developing innovative thermal management strategies and improving battery safety diagnostics to prevent hazardous incidents such as thermal runaway and sudden battery failures. His interdisciplinary research integrates materials science, mechanical engineering, and energy technology, aiming to create safer, more efficient, and sustainable energy storage solutions for the future.

Award and Honor

Dr. Guangxu Zhang has received numerous prestigious awards and honors in recognition of his outstanding contributions to battery thermal safety research. In 2024, he was awarded the Postdoctoral Fellowship Program (Grade B) of the China Postdoctoral Science Foundation, highlighting his excellence in postdoctoral research. The same year, he received the Young Scholar Award at the 6th Electric Vehicle and Battery Safety Conference, acknowledging his innovative work in battery safety. In 2023, he won the Best Report Award at the International Forum on New Energy Science and Electrification of Transportation, further establishing his impact in the field. His academic excellence has also been recognized through multiple National Scholarships for Doctoral Students (2021, 2022) and the 16th Academic Pioneer Award from Tongji University (2022). These accolades reflect his dedication to advancing battery technology, energy storage safety, and thermal management solutions, making him a distinguished researcher in his field.

Conclusion

Dr. Guangxu Zhang has an exceptional research record, demonstrated through numerous high-impact publications, patents, citations, and prestigious awards. His contributions to battery thermal safety and electric vehicle technology are highly valuable, making him a strong candidate for the Best Researcher Award. Addressing areas like international collaborations, commercialization, and industry partnerships would further solidify his standing as a leading researcher in the field.

Publications Top Noted

  • Title: Thermal safety assessment of lithium-ion batteries based on direct current impedance during the whole lifecycle
    Authors: G. Zhang (Guangxu), X. Wei (Xuezhe)
    Year: 2025
    Citations: 0
  • Title: Multi-level intelligence empowering lithium-ion batteries
    Authors: G. Zhang (Guangxu), J. Zhu (Jiangong), H. Dai (Haifeng), X. Wei (Xuezhe)
    Year: 2024
    Citations: 4
  • Title: Thermal runaway front propagation characteristics, modeling and judging criteria for multi-jelly roll prismatic lithium-ion battery applications
    Authors: S. Chen (Siqi), X. Wei (Xuezhe), Z. Zhu (Zhehui), H. Dai (Haifeng), M. Ouyang (Minggao), et al.
    Year: 2024
    Citations: 2

Luigi Fortuna | Engineering | Future Frontier Science Award

Prof. Luigi Fortuna | Engineering | Future Frontier Science Award

IEEE Life Fellow at Università di Catania, Italy

Prof. Luigi Fortuna is a Full Professor of Automatic Control at the University of Catania, Italy, with extensive experience in robust control, nonlinear science, chaos, robotics, and soft-computing strategies for control. He earned his Master’s degree in Electrical Engineering in 1977 and has since contributed significantly to the field with over 700 technical papers, 20 scientific books, and 10 industrial patents. His research has earned him recognition, reflected in an H-index of 56 on SCOPUS. Prof. Fortuna has coordinated and participated in numerous international research projects, including collaborations with institutions like the Joint European Torus (UK) and ENEA (Italy). He has also served in various academic leadership roles, such as the Dean of the Engineering Faculty and Coordinator of the PhD course in Systems Engineering at the University of Catania. A Fellow of IEEE, he is also a prominent figure in international conference organization and scientific journals.

Professional Profile

Education

Prof. Luigi Fortuna earned his education in Electrical Engineering, completing his Master’s degree at the University of Catania, Italy, in 1977. Following this, he pursued advanced studies and research, which led to his professional career in academia and industry. His educational foundation laid the groundwork for his extensive contributions to the fields of automatic control, nonlinear science, chaos theory, robotics, and soft computing for control applications. Throughout his career, Prof. Fortuna has been involved in various international academic and research initiatives, which have helped shape his expertise and knowledge. His academic journey has been marked by a focus on both theoretical and applied aspects of control systems, with a strong emphasis on interdisciplinary research. Prof. Fortuna’s educational background has also led to significant roles in academic leadership, where he has guided and mentored students at both undergraduate and postgraduate levels.

Professional Experience

Prof. Luigi Fortuna has had an illustrious career, primarily in academia and research, with a focus on electrical engineering, control systems, and nonlinear science. He began his academic career as an assistant professor at the University of Catania, Italy, and later became a full professor in the Department of Electrical Engineering. His professional experience spans various research areas, including nonlinear control, robotics, soft computing, and chaos theory, where he has made significant contributions. Prof. Fortuna has held various leadership positions, serving as the head of his department and as a member of numerous academic committees. He has collaborated extensively with international research groups, contributing to the advancement of control theory and its practical applications. Prof. Fortuna has supervised numerous graduate and Ph.D. students, influencing the development of future experts in the field. His professional experience also includes publishing over 200 scientific papers and serving on editorial boards of prestigious journals.

Research Interests

Prof. Luigi Fortuna’s research interests lie primarily in the fields of electrical engineering, control systems, nonlinear dynamics, and artificial intelligence. His work has focused extensively on nonlinear control theory, robotics, and the application of chaos theory in practical systems. He has contributed to the development of methods for controlling nonlinear systems, with applications in various engineering fields, including automation and robotics. Prof. Fortuna has also explored the integration of soft computing techniques, such as fuzzy logic and neural networks, into control systems to enhance system performance and adaptability. Additionally, his research encompasses the use of machine learning and optimization algorithms in the design and control of complex systems. His interdisciplinary approach has led to significant advancements in both theoretical frameworks and real-world applications, bridging the gap between advanced mathematical concepts and practical engineering solutions. Prof. Fortuna’s work continues to influence developments in control theory, robotics, and intelligent systems.

Awards and Honors

Prof. Luigi Fortuna has received numerous awards and honors throughout his distinguished career in recognition of his contributions to electrical engineering, control theory, and artificial intelligence. He has been acknowledged for his pioneering work in nonlinear dynamics, robotics, and advanced control systems. Prof. Fortuna was named a Fellow of the IEEE (Institute of Electrical and Electronics Engineers), a prestigious recognition that highlights his outstanding contributions to the field of control systems and nonlinear dynamics. Additionally, he has been awarded various international research grants, reflecting the global impact of his work. He has also been honored with awards from prominent academic and scientific organizations, further underscoring his leadership in the field of electrical engineering. Throughout his career, Prof. Fortuna has been a regular recipient of best paper awards at major conferences and symposiums. His academic achievements, dedication to research, and innovations have earned him widespread recognition and respect in the global scientific community.

Conclusion

Prof. Luigi Fortuna’s accomplishments make him a strong candidate for the Future Frontier Science Award. His extensive experience in complex systems, robust control, and nonlinear science, combined with his leadership and innovative contributions, aligns with the vision of the award. With an emphasis on expanding cross-disciplinary collaborations, mentoring emerging talent, and enhancing public engagement, Prof. Fortuna could further amplify his remarkable legacy in science.

Publications Top Noted

  • Fractional order systems: modeling and control applications
    • Authors: R Caponetto, G Dongola, L Fortuna, I Petras
    • Year: 2010
    • Citations: 1344
  • Soft Sensor for Monitoring and Control of Industrial Processes. In Advances in Industrial Control Series
    • Authors: L Fortuna, S Graziani, A Rizzo, MG Xibilia
    • Year: 2007
    • Citations: 1115
  • Chaotic sequences to improve the performance of evolutionary algorithms
    • Authors: R Caponetto, L Fortuna, S Fazzino, MG Xibilia
    • Year: 2003
    • Citations: 642
  • Timing of surgery following SARS-CoV-2 infection: an international prospective cohort study
    • Authors: COVIDSurg Collaborative
    • Year: 2021
    • Citations: 579
  • Soft sensors for product quality monitoring in debutanizer distillation columns
    • Authors: L Fortuna, S Graziani, MG Xibilia
    • Year: 2005
    • Citations: 401
  • Model order reduction techniques with applications in electrical engineering
    • Authors: L Fortuna, G Nunnari, A Gallo
    • Year: 2012
    • Citations: 321
  • Effects of mobility in a population of prisoner’s dilemma players
    • Authors: S Meloni, A Buscarino, L Fortuna, M Frasca, J Gómez-Gardeñes, V Latora, …
    • Year: 2009
    • Citations: 288
  • A chaotic circuit based on Hewlett-Packard memristor
    • Authors: A Buscarino, L Fortuna, M Frasca, L Valentina Gambuzza
    • Year: 2012
    • Citations: 286
  • Elective cancer surgery in COVID-19–free surgical pathways during the SARS-CoV-2 pandemic: an international, multicenter, comparative cohort study
    • Authors: JC Glasbey, D Nepogodiev, JFF Simoes, O Omar, E Li, ML Venn, PGDME, …
    • Year: 2021
    • Citations: 274
  • Chua’s circuit implementations: yesterday, today and tomorrow
    • Authors: L Fortuna, M Frasca, MG Xibilia
    • Year: 2009
    • Citations: 270
  • Effect of COVID-19 pandemic lockdowns on planned cancer surgery for 15 tumour types in 61 countries: an international, prospective, cohort study
    • Authors: J Glasbey, A Ademuyiwa, A Adisa, E AlAmeer, AP Arnaud, F Ayasra, …
    • Year: 2021
    • Citations: 265
  • Bifurcation and chaos in noninteger order cellular neural networks
    • Authors: P Arena, R Caponetto, L Fortuna, D Porto
    • Year: 1998
    • Citations: 225
  • Chua’s circuit can be generated by CNN cells
    • Authors: P Arena, S Baglio, L Fortuna, G Manganaro
    • Year: 1995
    • Citations: 224
  • Cellular neural networks: chaos, complexity and VLSI processing
    • Authors: G Manganaro, P Arena, L Fortuna
    • Year: 2012
    • Citations: 211
  • Does chaos work better than noise?
    • Authors: M Bucolo, R Caponetto, L Fortuna, M Frasca, A Rizzo
    • Year: 2002
    • Citations: 206

Mantesh Basappa Khot | Engineering | Best Researcher Award

Dr. Mantesh Basappa Khot | Engineering | Best Researcher Award

Assistant Professor at PES University, India

Dr. Mantesh Basappa Khot, Assistant Professor in Mechanical Engineering at PES University, is a dedicated researcher with expertise in machine design, composite materials, and sustainable engineering. He holds a Ph.D. from PES University (2024) and a Master’s degree in Machine Design from Visvesvaraya Technological University, where he was awarded a Gold Medal. Dr. Khot’s research contributions include over 14 international publications in areas such as composite material innovation for automotive and aerospace applications, as well as sustainable solutions like recycling textile and plastic waste. He has actively contributed to curriculum development, including his role in establishing the BEST center at PES University. In addition, Dr. Khot has significant experience in teaching a wide range of undergraduate and postgraduate courses, mentoring students, and organizing conferences. His technical skills in NAAC documentation, finite element analysis, and digital design further enhance his academic and professional profile.

Professional Profile

Education

Dr. Mantesh Basappa Khot has a robust educational background in engineering, which forms the foundation of his academic and research career. He earned his Ph.D. in Mechanical Engineering from PES University in 2024, where his research focused on innovative applications of composite materials. Prior to that, he completed his Master’s degree in Machine Design from Visvesvaraya Technological University, graduating with a Gold Medal, a testament to his academic excellence. His undergraduate studies were in Mechanical Engineering, where he acquired a solid technical foundation. Throughout his academic journey, Dr. Khot has engaged in various interdisciplinary projects, enhancing his expertise in machine design and sustainable engineering. His education is complemented by practical experience and a commitment to advancing engineering principles, making him a valuable asset in both teaching and research environments. Dr. Khot’s educational achievements underscore his dedication to fostering innovation and excellence in the field of mechanical engineering.

Professional Experience

Dr. Mantesh Basappa Khot has accumulated diverse professional experience within academia and research, specializing in mechanical engineering and material sciences. Currently, he serves as an Assistant Professor at the Department of Mechanical Engineering, PES University, where he is deeply involved in both teaching and guiding research projects. Dr. Khot has contributed to various interdisciplinary studies, focusing particularly on composite materials and sustainable engineering solutions. He is known for integrating practical, real-world applications into his curriculum, enhancing students’ understanding of machine design and structural analysis. Previously, Dr. Khot held positions in the industry where he gained hands-on experience in mechanical systems and advanced material applications, further enriching his academic insights. His collaborative projects with industry partners have addressed engineering challenges and have led to innovations in material efficiency and machine resilience. Dr. Khot’s professional experience reflects a blend of academic rigor and applied engineering expertise, positioning him as a leader in his field.

Research Interests

Dr. Mantesh Basappa Khot’s research interests focus on mechanical engineering and material science, specifically in the development and optimization of advanced composite materials for structural applications. His work explores the design, analysis, and application of fiber-reinforced composites, with an emphasis on enhancing their strength, durability, and sustainability. Dr. Khot is particularly interested in lightweight materials that retain high-performance characteristics, making them ideal for automotive, aerospace, and energy sectors. He is also dedicated to sustainable engineering practices, researching biodegradable and eco-friendly composites that minimize environmental impact. His studies delve into the material properties at both macro and micro levels, utilizing experimental and computational modeling techniques to better understand how different material compositions affect performance. Through his research, Dr. Khot aims to contribute to innovations in mechanical design and structural integrity, with a long-term goal of creating safer and more sustainable engineering solutions across various industries.

Awards and Honors

Dr. Mantesh Basappa Khot has been honored with several prestigious awards recognizing his contributions to mechanical engineering and materials science. His research innovations in composite materials and sustainable engineering solutions have earned him accolades from leading institutions and industry bodies. Dr. Khot has received awards for excellence in research, including distinctions at international conferences focused on composite materials and structural engineering. His contributions have also been acknowledged through grants and fellowships that support advanced research in materials science, enabling him to further explore innovative applications of lightweight and eco-friendly materials. Dr. Khot’s work has garnered recognition not only for its academic impact but also for its real-world applicability, especially in automotive and aerospace engineering. His commitment to sustainable engineering and groundbreaking contributions in the field have solidified his reputation as a respected and influential researcher, inspiring new advancements in materials science and mechanical engineering.

Conclusion

Dr. Mantesh Basappa Khot is a strong candidate for the Best Researcher Award due to his extensive publication record, innovative research in sustainable materials, and active involvement in academic and administrative roles. With further emphasis on interdisciplinary and industry-based projects, he could increase his impact and contribution to the mechanical engineering field. Dr. Khot’s academic accomplishments, research focus on sustainable materials, and commitment to teaching and mentorship make him a highly deserving nominee for this award.

Publications Top Noted

  • Plastic waste into fuel using pyrolysis process
    • Authors: MB Khot, S Basavarajappa
    • Year: 2017
    • Citations: 7
  • Effect of tool material on thrust force and delamination in the drilling of coconut leaf sheath fibre reinforced polymer composites
    • Authors: MB Khot, MP Kumar
    • Year: 2021
    • Citations: 5
  • Plastic waste into fuel using pyrolysis process
    • Authors: BK Mantesh, S Basavarajappa
    • Year: 2017
    • Citations: 3
  • A review on textile waste production, management and its applications in construction engineering field
    • Authors: MB Khot, KS Sridhar, D Sethuram
    • Year: 2022
    • Citations: 2
  • Finite element modelling and dynamic characteristic analysis of the human CTL-Spine
    • Authors: S Dayanand, BR Kumar, A Rao, C CV, M B Khot, H Shetty
    • Year: 2020
    • Citations: 2
  • Plastic waste into fuel using pyrolysis process
    • Authors: S Basavarajappa, MB Khot
    • Year: 2017
    • Citations: 2
  • Finite element modelling and simulation of car bonnet’s crashworthiness parameters for pedestrian safety
    • Authors: KS Neeraj, SRS Salanke, SS Tejas, SR Sudhansh, MB Khot
    • Year: 2024
    • Citations: 1
  • A review on fabrication and dynamic characterisation of composite beam structure
    • Authors: J Akshobya, MB Khot
    • Year: 2023
    • Citations: 1
  • A cotton waste reinforced composite for automotive applications: development and thermal characterization
    • Authors: MB Khot, KSSD Sethuram
    • Year: 2024
    • Citations: 0
  • A review on finite element modelling and experimental analysis of crashworthiness design of automotive body
    • Authors: SRS Salanke, S Shantha Raju, T SS, N Kolhapuri Srinivas, MB Khot
    • Year: 2024
    • Citations: 0
  • Finite element analysis & topology optimization of excavator bucket teeth for optimal performance
    • Authors: BAM Mohan, MU Rahaman, R Madhu, MB Khot
    • Year: 2024
    • Citations: 0
  • Recent advancements in 3D printing for gear design and analysis: a comprehensive review
    • Authors: L Pujari, S Manoj, OK Gaddikeri, P Shetty, MB Khot
    • Year: 2024
    • Citations: 0
  • Prediction of elastic properties of cotton waste reinforced epoxy composites for structural applications
    • Authors: MB Khot, KS Sridhar, D Sethuram
    • Year: 2024
    • Citations: 0
  • Design and Analysis of Multitasking Column Climbing Robot
    • Authors: V Shanura Pattara, V Abhi, R Ravi, PV Ranganatha, M Basappa Khot
    • Year: 2023
    • Citations: 0
  • Experimental and Numerical Investigation of Tensile Strength of Hybrid Flax–Glass Epoxy Reinforced Composite
    • Authors: RR Reddy, MB Khot
    • Year: 2023
    • Citations: 0

Aly Mousaad Aly | Engineering | Best Researcher Award

Prof. Aly Mousaad Aly | Engineering | Best Researcher Award

PhD at Louisiana State University, United States

Dr. Jienan Shen is an accomplished Assistant Researcher at the Bionic Sensing and Intelligence Center within the Institute of Biomedical and Health Engineering at the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences. With a robust background in microelectronics and solid-state electronics, Dr. Shen has dedicated his research career to the development of innovative biomedical analysis platforms utilizing microfluidic technology. His work integrates advanced engineering principles with medical applications, aiming to enhance diagnostic and therapeutic processes. An active contributor to the scientific community, Dr. Shen has published extensively and has several patents to his name. His commitment to advancing healthcare technology through research underscores his role as a leader in the field, where he continues to inspire and collaborate with peers and aspiring scientists alike.

Professional Profile

Education

Dr. Shen obtained his Ph.D. in Microelectronics and Solid-State Electronics from Xiamen University, where he developed a strong foundation in semiconductor technology and its applications in biomedical engineering. His doctoral research focused on the integration of microelectronic devices with biological systems, which paved the way for his subsequent exploration of microfluidic technologies. Following his Ph.D., Dr. Shen completed a postdoctoral training program through a collaborative initiative between the Shenzhen Institute of Advanced Technology and Shenzhen Children’s Hospital. This program allowed him to further refine his research skills and gain hands-on experience in applying microfluidic platforms for biomedical applications, solidifying his expertise in creating advanced diagnostic tools that cater to healthcare needs.

Professional Experience

Dr. Shen’s professional experience encompasses various roles that highlight his leadership and collaborative skills in research. As an Assistant Researcher at the Bionic Sensing and Intelligence Center, he leads a postdoctoral project while also participating in numerous significant research initiatives. His involvement includes major national projects, such as the National Key Research and Development Program and the National Natural Science Foundation. He has also contributed to regional initiatives, including the Guangdong Provincial Key Area R&D Program and key projects from the Shenzhen Science and Technology Innovation Commission. His active engagement in these endeavors showcases his ability to work effectively in multidisciplinary teams, driving innovation in biomedical technology and contributing to advancements in health care solutions.

Research Interests

Dr. Shen’s primary research interest lies in the development of biomedical analysis platforms through microfluidic technology. His work focuses on creating innovative tools that enhance the efficiency and accuracy of biomedical diagnostics, allowing for faster and more reliable results. This research area encompasses the design and fabrication of microfluidic devices that integrate biological samples with electronic systems, enabling advanced sensing and analysis capabilities. Dr. Shen is also interested in exploring applications of these technologies in point-of-care diagnostics and personalized medicine. His goal is to bridge the gap between engineering and clinical practice, ultimately improving patient outcomes through the development of novel biomedical solutions that address real-world health challenges.

Awards and Honors

Throughout his career, Dr. Shen has received recognition for his contributions to the field of biomedical engineering. He has authored or co-authored 22 papers in prestigious international journals, which collectively have garnered significant citations, highlighting the impact of his research. Additionally, his innovative work has led to the filing of five international and domestic invention patents, showcasing his commitment to advancing technology in healthcare. His involvement in high-profile research projects has also earned him acknowledgment from various academic and professional organizations. While specific awards may vary, Dr. Shen’s overall accomplishments reflect his dedication to excellence in research and his influence as a thought leader in the domain of microfluidics and biomedical analysis.

Conclusion

Dr. Jienan Shen is a strong candidate for the Best Researcher Award due to his substantial research contributions, innovative spirit, and leadership qualities. His work in developing biomedical analysis platforms using microfluidic technology is highly relevant and impactful. By focusing on improving his outreach efforts and fostering interdisciplinary collaborations, Dr. Shen can further enhance his influence in the scientific community. His achievements not only highlight his dedication to advancing biomedical engineering but also position him as a key contributor to the future of healthcare technologies.

Publication Top Noted

  • 📝 Rapid fabrication of a four-layer PMMA-based microfluidic chip using CO2-laser micromachining and thermal bonding
    • Authors: X Chen, J Shen, M Zhou
    • Year: 2016
    • Citations: 121
  • 🔍 Numerical analysis of mixing behaviors of two types of E-shape micromixers
    • Authors: X Chen, J Shen
    • Year: 2017
    • Citations: 93
  • 📖 Review of membranes in microfluidics
    • Authors: X Chen, J Shen
    • Year: 2017
    • Citations: 84
  • 🌱 From structures, packaging to application: A system-level review for micro direct methanol fuel cell
    • Authors: X Chen, T Li, J Shen, Z Hu
    • Year: 2017
    • Citations: 81
  • 🔄 Numerical and experimental investigation on splitting-and-recombination micromixer with E-shape mixing units
    • Authors: X Chen, J Shen
    • Year: 2017
    • Citations: 44
  • 🏗️ Manufacturing methods and applications of membranes in microfluidics
    • Authors: X Chen, J Shen, Z Hu, X Huo
    • Year: 2016
    • Citations: 38
  • 🌀 Fractal design of microfluidics and nanofluidics—A review
    • Authors: X Chen, T Li, J Shen, Z Hu
    • Year: 2016
    • Citations: 33
  • ❤️ Digital microfluidic thermal control chip-based multichannel immunosensor for noninvasively detecting acute myocardial infarction
    • Authors: J Shen, L Zhang, J Yuan, Y Zhu, H Cheng, Y Zeng, J Wang, X You, …
    • Year: 2021
    • Citations: 28
  • 📏 Design and fabrication of a D33-mode piezoelectric micro-accelerometer
    • Authors: M Xu, H Zhou, L Zhu, J Shen, Y Zeng, Y Feng, H Guo
    • Year: 2019
    • Citations: 20
  • 🔬 Simulation and experimental analysis of a SAR micromixer with F-shape mixing units
    • Authors: X Chen, J Shen
    • Year: 2017
    • Citations: 20
  • 🧬 CRISPR/Cas12a-Assisted isothermal amplification for rapid and specific diagnosis of respiratory virus on a microfluidic platform
    • Authors: J Shen, Z Chen, R Xie, J Li, C Liu, Y He, X Ma, H Yang, Z Xie
    • Year: 2023
    • Citations: 16
  • ⚡ Micro direct methanol fuel cell: functional components, supplies management, packaging technology and application
    • Authors: X Chen, Z Zhang, J Shen, Z Hu
    • Year: 2017
    • Citations: 16
  • 🔄 Design and simulation of a chaotic micromixer with diamond-like micropillar based on artificial neural network
    • Authors: X Chen, J Shen
    • Year: 2017
    • Citations: 15
  • 🖥️ Simulation in system-level based on model order reduction for a square-wave micromixer
    • Authors: X Chen, J Shen
    • Year: 2015
    • Citations: 12
  • 🔧 Fabrication and performance evaluation of two multi-layer passive micromixers
    • Authors: X Chen, J Shen, Z Hu
    • Year: 2018
    • Citations: 10
  • 🧪 Effects of annealing parameters on residual stress and piezoelectric performance of ZnO thin films studied by X-ray diffraction and atomic force microscopy
    • Authors: JN Shen, YB Zeng, MH Xu, LH Zhu, BL Liu, H Guo
    • Year: 2019
    • Citations: 8
  • 🌡️ A three-dimensional simulation analysis of fluid flow and heat transfer in microchannel heat sinks with different structures
    • Authors: J Shen, X Li, Y Zhu, B Zhang, H Guo, B Liu, H Chen
    • Year: 2021
    • Citations: 5
  • 🔬 PMMA microreactor for chemiluminescence detection of Cu (II) based on 1, 10-Phenanthroline-hydrogen peroxide reaction
    • Authors: X Chen, J Shen, T Li
    • Year: 2016
    • Citations: 4
  • 💻 A low-temperature digital microfluidic system used for protein–protein interaction detection
    • Authors: J Shen, J Liao, H Liu, C Liu, C Li, H Cheng, H Yang, H Chen
    • Year: 2023
    • Citations: 3
  • 🛠️ MEMS 中基底和薄膜的 CMP 制造技术
    • Authors: 曾毅波,张杰,许马会,郝锐,沈杰男,周辉,郭航
    • Year: 2018
    • Citations: 3

jienan Shen | Engineering | Best Researcher Award

Dr. jienan Shen | Engineering | Best Researcher Award

Research associate at Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China

Dr. Jienan Shen is an accomplished Assistant Researcher at the Bionic Sensing and Intelligence Center within the Institute of Biomedical and Health Engineering at the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences. With a robust background in microelectronics and solid-state electronics, Dr. Shen has dedicated his research career to the development of innovative biomedical analysis platforms utilizing microfluidic technology. His work integrates advanced engineering principles with medical applications, aiming to enhance diagnostic and therapeutic processes. An active contributor to the scientific community, Dr. Shen has published extensively and has several patents to his name. His commitment to advancing healthcare technology through research underscores his role as a leader in the field, where he continues to inspire and collaborate with peers and aspiring scientists alike.

Professional Profile

Education

Dr. Shen obtained his Ph.D. in Microelectronics and Solid-State Electronics from Xiamen University, where he developed a strong foundation in semiconductor technology and its applications in biomedical engineering. His doctoral research focused on the integration of microelectronic devices with biological systems, which paved the way for his subsequent exploration of microfluidic technologies. Following his Ph.D., Dr. Shen completed a postdoctoral training program through a collaborative initiative between the Shenzhen Institute of Advanced Technology and Shenzhen Children’s Hospital. This program allowed him to further refine his research skills and gain hands-on experience in applying microfluidic platforms for biomedical applications, solidifying his expertise in creating advanced diagnostic tools that cater to healthcare needs.

Professional Experience

Dr. Shen’s professional experience encompasses various roles that highlight his leadership and collaborative skills in research. As an Assistant Researcher at the Bionic Sensing and Intelligence Center, he leads a postdoctoral project while also participating in numerous significant research initiatives. His involvement includes major national projects, such as the National Key Research and Development Program and the National Natural Science Foundation. He has also contributed to regional initiatives, including the Guangdong Provincial Key Area R&D Program and key projects from the Shenzhen Science and Technology Innovation Commission. His active engagement in these endeavors showcases his ability to work effectively in multidisciplinary teams, driving innovation in biomedical technology and contributing to advancements in health care solutions.

Research Interests

Dr. Shen’s primary research interest lies in the development of biomedical analysis platforms through microfluidic technology. His work focuses on creating innovative tools that enhance the efficiency and accuracy of biomedical diagnostics, allowing for faster and more reliable results. This research area encompasses the design and fabrication of microfluidic devices that integrate biological samples with electronic systems, enabling advanced sensing and analysis capabilities. Dr. Shen is also interested in exploring applications of these technologies in point-of-care diagnostics and personalized medicine. His goal is to bridge the gap between engineering and clinical practice, ultimately improving patient outcomes through the development of novel biomedical solutions that address real-world health challenges.

Awards and Honors

Throughout his career, Dr. Shen has received recognition for his contributions to the field of biomedical engineering. He has authored or co-authored 22 papers in prestigious international journals, which collectively have garnered significant citations, highlighting the impact of his research. Additionally, his innovative work has led to the filing of five international and domestic invention patents, showcasing his commitment to advancing technology in healthcare. His involvement in high-profile research projects has also earned him acknowledgment from various academic and professional organizations. While specific awards may vary, Dr. Shen’s overall accomplishments reflect his dedication to excellence in research and his influence as a thought leader in the domain of microfluidics and biomedical analysis.

Conclusion

Dr. Jienan Shen is a strong candidate for the Best Researcher Award due to his substantial research contributions, innovative spirit, and leadership qualities. His work in developing biomedical analysis platforms using microfluidic technology is highly relevant and impactful. By focusing on improving his outreach efforts and fostering interdisciplinary collaborations, Dr. Shen can further enhance his influence in the scientific community. His achievements not only highlight his dedication to advancing biomedical engineering but also position him as a key contributor to the future of healthcare technologies.

Publication Top Noted

  • 📝 Rapid fabrication of a four-layer PMMA-based microfluidic chip using CO2-laser micromachining and thermal bonding
    • Authors: X Chen, J Shen, M Zhou
    • Year: 2016
    • Citations: 121
  • 🔍 Numerical analysis of mixing behaviors of two types of E-shape micromixers
    • Authors: X Chen, J Shen
    • Year: 2017
    • Citations: 93
  • 📖 Review of membranes in microfluidics
    • Authors: X Chen, J Shen
    • Year: 2017
    • Citations: 84
  • 🌱 From structures, packaging to application: A system-level review for micro direct methanol fuel cell
    • Authors: X Chen, T Li, J Shen, Z Hu
    • Year: 2017
    • Citations: 81
  • 🔄 Numerical and experimental investigation on splitting-and-recombination micromixer with E-shape mixing units
    • Authors: X Chen, J Shen
    • Year: 2017
    • Citations: 44
  • 🏗️ Manufacturing methods and applications of membranes in microfluidics
    • Authors: X Chen, J Shen, Z Hu, X Huo
    • Year: 2016
    • Citations: 38
  • 🌀 Fractal design of microfluidics and nanofluidics—A review
    • Authors: X Chen, T Li, J Shen, Z Hu
    • Year: 2016
    • Citations: 33
  • ❤️ Digital microfluidic thermal control chip-based multichannel immunosensor for noninvasively detecting acute myocardial infarction
    • Authors: J Shen, L Zhang, J Yuan, Y Zhu, H Cheng, Y Zeng, J Wang, X You, …
    • Year: 2021
    • Citations: 28
  • 📏 Design and fabrication of a D33-mode piezoelectric micro-accelerometer
    • Authors: M Xu, H Zhou, L Zhu, J Shen, Y Zeng, Y Feng, H Guo
    • Year: 2019
    • Citations: 20
  • 🔬 Simulation and experimental analysis of a SAR micromixer with F-shape mixing units
    • Authors: X Chen, J Shen
    • Year: 2017
    • Citations: 20
  • 🧬 CRISPR/Cas12a-Assisted isothermal amplification for rapid and specific diagnosis of respiratory virus on a microfluidic platform
    • Authors: J Shen, Z Chen, R Xie, J Li, C Liu, Y He, X Ma, H Yang, Z Xie
    • Year: 2023
    • Citations: 16
  • ⚡ Micro direct methanol fuel cell: functional components, supplies management, packaging technology and application
    • Authors: X Chen, Z Zhang, J Shen, Z Hu
    • Year: 2017
    • Citations: 16
  • 🔄 Design and simulation of a chaotic micromixer with diamond-like micropillar based on artificial neural network
    • Authors: X Chen, J Shen
    • Year: 2017
    • Citations: 15
  • 🖥️ Simulation in system-level based on model order reduction for a square-wave micromixer
    • Authors: X Chen, J Shen
    • Year: 2015
    • Citations: 12
  • 🔧 Fabrication and performance evaluation of two multi-layer passive micromixers
    • Authors: X Chen, J Shen, Z Hu
    • Year: 2018
    • Citations: 10
  • 🧪 Effects of annealing parameters on residual stress and piezoelectric performance of ZnO thin films studied by X-ray diffraction and atomic force microscopy
    • Authors: JN Shen, YB Zeng, MH Xu, LH Zhu, BL Liu, H Guo
    • Year: 2019
    • Citations: 8
  • 🌡️ A three-dimensional simulation analysis of fluid flow and heat transfer in microchannel heat sinks with different structures
    • Authors: J Shen, X Li, Y Zhu, B Zhang, H Guo, B Liu, H Chen
    • Year: 2021
    • Citations: 5
  • 🔬 PMMA microreactor for chemiluminescence detection of Cu (II) based on 1, 10-Phenanthroline-hydrogen peroxide reaction
    • Authors: X Chen, J Shen, T Li
    • Year: 2016
    • Citations: 4
  • 💻 A low-temperature digital microfluidic system used for protein–protein interaction detection
    • Authors: J Shen, J Liao, H Liu, C Liu, C Li, H Cheng, H Yang, H Chen
    • Year: 2023
    • Citations: 3
  • 🛠️ MEMS 中基底和薄膜的 CMP 制造技术
    • Authors: 曾毅波,张杰,许马会,郝锐,沈杰男,周辉,郭航
    • Year: 2018
    • Citations: 3