Mohamed Zakaria | Engineering | Best Researcher Award

Dr. Mohamed Zakaria | Engineering | Best Researcher Award

Kafrelsheikh University Faculty of Engineering, Egypt

Dr. Mohamed H. Zakaria, an Assistant Professor in Civil Engineering at Kafrelsheikh University, Egypt, is a dedicated researcher specializing in Soil Mechanics, Foundation Engineering, Highway Engineering, and Reinforced Concrete. With a Ph.D. from Menoufia University and a consistent academic trajectory, he has published extensively in reputable international journals, contributing innovative research on structural behavior, excavation systems, and the integration of advanced techniques such as machine learning and finite element modeling. His recent work addresses critical infrastructure challenges, reflecting both technical depth and practical relevance. Dr. Zakaria maintains active profiles on ORCID, Scopus, and ResearchGate, demonstrating his engagement with the global research community. His research reflects strong potential for collaboration and societal impact. While he could further enhance his profile through increased citations, international projects, and mentorship roles, his achievements and commitment make him a highly suitable candidate for the Best Researcher Award, with significant promise for future contributions.

Professional Profile 

Education🎓

Dr. Mohamed H. Zakaria has pursued a robust and progressive academic path in the field of Civil Engineering. He earned his Ph.D. in Civil Engineering from Menoufia University, Egypt, where he focused on advanced geotechnical and structural engineering concepts. Prior to this, he obtained a Master of Science degree in Civil Engineering from Kafrelsheikh University, further deepening his expertise in soil mechanics and foundation engineering. His academic journey began at Kafrelsheikh University, where he laid a strong foundation in engineering principles. Throughout his educational career, Dr. Zakaria demonstrated academic excellence, dedication to research, and a commitment to innovation. His studies have equipped him with both theoretical knowledge and practical problem-solving skills, which are evident in his applied research and numerous publications. His educational background not only reflects a high level of specialization in his chosen field but also positions him well for continued contributions to civil engineering education and research.

Professional Experience📝

Dr. Mohamed H. Zakaria has amassed extensive professional experience in the field of Civil Engineering, primarily through his longstanding association with Kafrelsheikh University in Egypt. He began his academic career as a Demonstrator in 2014, steadily progressing to the position of Assistant Lecturer in 2019, and currently serves as an Assistant Professor in the Civil Engineering Department. His roles have encompassed teaching, mentoring, and conducting impactful research in soil mechanics, foundation engineering, and highway engineering. Dr. Zakaria has contributed significantly to the academic community through his involvement in experimental investigations, numerical modeling, and structural analysis. His research has been published in numerous high-impact journals, reflecting both academic rigor and practical relevance. Through his professional journey, he has demonstrated a strong commitment to advancing civil engineering knowledge and fostering innovation. His experience positions him as a capable educator, active researcher, and a valuable contributor to both academic and applied engineering projects.

Research Interest🔎

Dr. Mohamed H. Zakaria’s research interests are rooted in the core areas of Civil Engineering, with a particular focus on Soil Mechanics, Foundation Engineering, Highway Engineering, and Reinforced Concrete. He is especially passionate about understanding and improving the behavior of structural systems under various loading and environmental conditions. His work explores critical challenges such as settlement mitigation, bearing capacity enhancement, and the structural performance of pile walls and reinforced concrete elements. Dr. Zakaria is also interested in the application of advanced techniques like finite element modeling, machine learning, and experimental methods to optimize design and construction practices. His interdisciplinary approach combines theoretical modeling with practical experimentation, aiming to develop innovative and sustainable engineering solutions. Through his research, he seeks to enhance the safety, durability, and efficiency of infrastructure systems, making a tangible impact on both academic knowledge and engineering practice. His work invites collaboration and has strong potential for global relevance.

Award and Honor🏆

Dr. Mohamed H. Zakaria has earned recognition for his dedication to research and academic excellence in Civil Engineering. While specific named awards and honors are not extensively listed in public records, his consistent publication of high-quality research in reputable, peer-reviewed international journals reflects his scholarly impact and recognition within the academic community. His achievements in developing innovative solutions for geotechnical and structural engineering challenges, such as enhancing the performance of secant pile walls and utilizing machine learning in structural prediction, demonstrate both technical expertise and thought leadership. His rising citation metrics and growing international research collaborations also highlight his influence and professional standing. Dr. Zakaria’s academic progression—from Demonstrator to Assistant Professor at Kafrelsheikh University—illustrates his merit and recognition by peers and institutions. As he continues to contribute significantly to his field, he is well-positioned to receive further honors and awards in acknowledgment of his impactful research and academic leadership.

Research Skill🔬

Dr. Mohamed H. Zakaria possesses a diverse and well-developed set of research skills that span both theoretical and practical aspects of Civil Engineering. He is highly proficient in experimental design and laboratory testing, particularly in the areas of soil mechanics, foundation behavior, and reinforced concrete structures. His ability to conduct complex analyses is complemented by his expertise in numerical modeling, including the use of finite element methods for simulating structural and geotechnical behavior. Additionally, Dr. Zakaria has demonstrated skill in applying advanced technologies such as machine learning to predict structural performance, showcasing his adaptability and innovation in solving engineering problems. He is also adept at conducting comprehensive literature reviews, synthesizing technical data, and publishing findings in high-impact journals. His collaborative approach and strong communication skills enhance his ability to work across multidisciplinary teams. Overall, his research skillset makes him a valuable contributor to academic advancements and practical engineering solutions.

Conclusion💡

Dr. Mohamed H. Zakaria is a highly promising and dedicated researcher with a strong and focused track record in civil engineering. His steady academic career, continuous publication record, and exploration of advanced methods like machine learning and FE modeling in civil applications showcase technical excellence and innovative thinking.

Publications Top Noted✍️

  1. Title: Mitigating Settlement and Enhancing Bearing Capacity of Adjacent Strip Footings Using Sheet Pile Walls: An Experimental Approach
    Authors: Ali Basha, Ahmed Yousry Akal, Mohamed H. Zakaria
    Year: 2025
    Citation: Infrastructures, 2025, DOI: 10.3390/infrastructures10040083

  2. Title: A Comparative Study of Terrestrial Laser Scanning and Photogrammetry: Accuracy and Applications
    Authors: Mohamed H. Zakaria, Hossam Fawzy, Mohammed El-Beshbeshy, Magda Farhan
    Year: 2025
    Citation: Civil Engineering Journal, March 2025, DOI: 10.28991/cej-2025-011-03-021

  3. Title: Cantilever Piled-Wall Design Criteria in Cohesionless Soil: A Review
    Authors: Mohamed Hamed Zakaria, Ali Basha
    Year: 2024
    Citation: World Journal of Engineering, 2024, DOI: 10.1108/WJE-01-2024-0038

  4. Title: Prediction of RC T-Beams Shear Strength Based on Machine Learning
    Authors: Saad A. Yehia, Sabry Fayed, Mohamed H. Zakaria, Ramy I. Shahin
    Year: 2024
    Citation: International Journal of Concrete Structures and Materials, 2024, DOI: 10.1186/S40069-024-00690-Z

  5. Title: Effect of Insufficient Tension Lap Splices on the Deformability and Crack Resistance of Reinforced Concrete Beams: A Comparative Study Techniques and Experimental Study
    Authors: Roba Osman, Boshra El-taly, Ahmed Fahmy, Mohamed Zakaria
    Year: 2024
    Citation: Engineering Research Journal, Nov 2024, DOI: 10.21608/erjm.2024.296635.1337

  6. Title: Predicting the Maximum Axial Capacity of Secant Pile Walls Embedded in Sandy Soil
    Authors: Ali M. Basha, Mohamed H. Zakaria, Maher T. El-Nimr, Mohamed M. Abo-Raya
    Year: 2024
    Citation: Geotechnical and Geological Engineering, July 2024, DOI: 10.1007/s10706-023-02734-9

  7. Title: Two-Dimensional Numerical Approaches of Excavation Support Systems: A Comprehensive Review of Key Considerations and Modelling Techniques
    Authors: Mohamed Hamed Zakaria, Ali Basha
    Year: 2024
    Citation: Journal of Contemporary Technology and Applied Engineering, July 2024, DOI: 10.21608/jctae.2024.299692.1030

  8. Title: Interfacial Shear Behavior of Composite Concrete Substrate to High-Performance Concrete Overly After Exposure to Elevated Temperature
    Authors: Nagat M. Zalhaf, Sabry Fayed, Mohamed H. Zakaria
    Year: 2024
    Citation: International Journal of Concrete Structures and Materials, March 2024, DOI: 10.1186/s40069-023-00654-9

Zhenyan Xia | Engineering | New Horizons Science Invention Award

Mr. Zhenyan Xia | Engineering | New Horizons Science Invention Award

Associate Professor at Tianjin University, China

Xia Zhenyan is an Associate Professor at Tianjin University, specializing in fluid mechanics, molecular dynamics, and physical chemistry. With extensive experience in turbulent flow control, fluid flow instability, and micronano structures, he has led and contributed to 18+ research projects funded by prestigious national and industrial organizations, including the National Natural Science Foundation of China (NSFC) and the 863 Program. His innovative research on superhydrophobic surfaces has introduced novel methods to reduce droplet contact time by 37%, with applications in engineering, coatings, and energy systems. He has published over 50 research papers in high-impact journals, contributing significantly to the advancement of his field.

Professional Profile

Education

Xia Zhenyan holds advanced degrees in mechanical engineering and fluid mechanics from Tianjin University. His academic training provided a strong foundation in theoretical modeling, computational fluid dynamics (CFD), and materials science, shaping his research focus on fluid flow behavior and molecular interactions. His educational background has enabled him to bridge the gap between fundamental research and real-world applications, particularly in engineering solutions involving microfluidics, nanotechnology, and hydrophobic surface design.

Professional Experience

Currently serving as an Associate Professor at the School of Mechanical Engineering, Tianjin University, Xia Zhenyan is also the Deputy Director of the Department of Mechanics. His professional career is marked by multidisciplinary research collaborations in fluid dynamics, advanced materials, and computational modeling. As the Principal Investigator (PI) of multiple national research projects, he has played a key role in developing innovative solutions for industrial fluid mechanics challenges. His expertise extends to engineering applications for energy-efficient materials, hydrodynamics, and smart surface technology, making him a recognized leader in his field.

Research Interests

Xia Zhenyan’s research focuses on fluid mechanics, molecular dynamics, and physical chemistry, with a particular interest in turbulent flow control, fluid flow instability, and micronano-structured surfaces. His work explores the theoretical and engineering applications of molecular dynamics in fluid interactions, contributing to advancements in superhydrophobic coatings, energy-efficient materials, and microfluidics. A key aspect of his research involves developing novel techniques to reduce droplet contact time on surfaces, which has potential applications in biomedical engineering, aerospace, and industrial coatings. His interdisciplinary approach integrates computational simulations, experimental studies, and theoretical modeling, driving innovations in fluid behavior prediction, nanotechnology applications, and hydrodynamic performance enhancement.

Awards and Honors

Xia Zhenyan has been recognized for his outstanding contributions to fluid mechanics and molecular dynamics through multiple national and institutional awards. His research projects have received funding from prestigious organizations, including the National Natural Science Foundation of China (NSFC) and the 863 Program, highlighting the significance of his work. His publications in high-impact journals such as Physics of Fluids and Computational Materials Science have earned him academic recognition. As a Principal Investigator (PI) of multiple groundbreaking projects, he has been honored for excellence in scientific innovation and engineering applications. Additionally, his role as Deputy Director of the Department of Mechanics at Tianjin University reflects his leadership in advancing mechanical engineering and fluid dynamics research.

Conclusion

Dr. Mohamed Kchaou is a highly deserving candidate for the Academic Excellence Recognition Award. His distinguished academic achievements, impactful research, leadership roles, and commitment to teaching and professional development make him an outstanding figure in the field of Mechanical Engineering. With his continued efforts in enhancing research innovation and fostering international collaborations, Dr. Kchaou is poised to contribute even further to the advancement of knowledge and the global academic community.

Publications Top Noted

  • Shi, H., Xu, H., Bai, Y., Xia, Z. (2025). The effect of superhydrophobic surfaces with circular ring on the contact time of droplet impact. Colloids and Surfaces A: Physicochemical and Engineering Aspects. Citations: 0
  • Shi, H., Hou, X., Xu, H., Bai, Y., Xia, Z. (2024). An analysis of the contact time of nanodroplets impacting superhydrophobic surfaces with square ridges. Computational Materials Science. Citations: 0
  • Tai, Y., Xu, H., Bai, Y., Wang, S., Xia, Z. (2022). Experimental investigation of the impact of viscous droplets on superamphiphobic surfaces. Physics of Fluids, 34(2), 022101. Citations: 8
  • Yan, K., Guo, X., Xia, Z. (2021). The experimental study on the characteristics of turbulent boundary layer based on the PIV technology of non-uniform interrogation window. Chinese Journal of Applied Mechanics, 38(4), pp. 1293–1300. Citations: 2
  • Tai, Y., Zhao, Y., Guo, X., Wang, S., Xia, Z. (2021). Research on the contact time of a bouncing microdroplet with lattice Boltzmann method. Physics of Fluids, 33(4), 042011. Citations: 11
  • Xia, Z., Zhao, Y., Yang, Z., Wang, S., Wang, M. (2021). The simulation of droplet impact on the super-hydrophobic surface with micro-pillar arrays fabricated by laser irradiation and silanization processes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 612, 125966. Citations: 22
  • Xia, Z., Xiao, Y., Yang, Z., Liu, X., Tian, Y. (2019). Droplet impact on the super-hydrophobic surface with micro-pillar arrays fabricated by hybrid laser ablation and silanization process. Materials, 12(5), 765. Citations: 27
  • Xia, Z., Li, Z., Li, J., Tian, Y. (2016). An experimental study on breakup characteristics of impinging jets. Journal of Tianjin University Science and Technology, 49(7), pp. 770–776. Citations: 6
  • Xu, L., Xia, Z., Zhang, M., Du, Q., Bai, F. (2015). Experimental research on breakup of 2D power law liquid film. Chinese Journal of Chemical Engineering, 23(9), pp. 1429–1439. Citations: 3
  • Li, J.-J., Xia, Z.-Y., Tian, Y. (2015). Experiment on breakup mechanism of impinging jet of power-law liquid. Journal of Aerospace Power, 30(7), pp. 1752–1758. Citations: 1

Mohamed Kchaou | Engineering | Academic Excellence Recognition Award

Prof. Dr. Mohamed Kchaou | Engineering | Academic Excellence Recognition Award

Professeur at Department of Engineering, College of Engineering, University of Bisha, Saudi Arabia

Dr. Mohamed Kchaou is a Professor of Mechanical Engineering at the University of Bisha, Saudi Arabia, specializing in sustainability and research. He holds an impressive academic background, with an h-index of 21 and significant professional achievements, including a nomination for Full Membership in Sigma Xi, The Scientific Research Honor Society. His work has earned him recognition as one of the top 5 scientists at the University of Bisha in 2025, ranked first in Engineering & Technology. In addition to his academic roles, he contributes to international relations, scientific research, and graduate studies. He has worked in various international institutions and is recognized for his leadership in the academic and research communities, particularly in mechanical engineering, tribology, and innovation.

Professional Profile

Education 

Dr. Kchaou earned his Ph.D. in Mechanical Engineering from the Ecole Centrale of Lille (France) and the University of Sfax (Tunisia) in 2010. His thesis focused on the coupling friction oxidation effect on the wear of H13 steel, specifically for hot forging applications. He completed his Master’s degree in Mechanics and Engineering from the National School of Engineers of Sfax in 2007, where he studied performance and damage in a copper alloy under torsion fatigue. His academic journey began with a Bachelor’s in Electromechanical Engineering from the National School of Engineers of Sfax in 2006. His educational foundation laid the groundwork for his expertise in tribology, sustainability, and materials science.

Professional Experience

Dr. Kchaou holds a distinguished academic career, currently serving as a full Professor at the University of Bisha, where he also plays an integral role as a Consultant to the Deputy Vice-Chancellor for Graduate Studies and Scientific Research. His leadership in international relations and research partnerships has made significant impacts on the university. Previously, he served as the Vice-Dean at the Higher Institute of Arts and Crafts of Sfax and has been involved with several prestigious universities across Europe, including in France, Spain, and Turkey. Throughout his career, he has held various positions ranging from Assistant Professor to Associate Professor, delivering impactful courses in materials science, industrial management, and mechanical engineering at different international institutions. Dr. Kchaou’s diverse academic and administrative roles reflect his expertise and commitment to advancing engineering education and research.

Research Interests

Dr. Mohamed Kchaou’s research primarily focuses on sustainability, tribology, and the performance of materials in mechanical engineering. His work explores the friction oxidation effects on wear and tear, especially in the context of hot forging applications, aiming to improve the durability and efficiency of materials under extreme conditions. He is also interested in the development and optimization of new materials, particularly in relation to mechanical behavior and damage tolerance under different loading conditions. Dr. Kchaou’s expertise spans multiple aspects of materials science, including fatigue behavior, wear mechanisms, and the interplay between mechanical properties and environmental factors. He has a keen interest in applying these insights to various industries, such as automotive and manufacturing, to promote energy-efficient and environmentally sustainable solutions. His research contributes to advancing both theoretical knowledge and practical applications in materials engineering and mechanical systems.

Awards and Honors

Dr. Mohamed Kchaou has earned numerous prestigious awards and honors throughout his academic career. Notably, he has been nominated for Full Membership in Sigma Xi, The Scientific Research Honor Society, recognizing his significant contributions to the field of mechanical engineering. In 2025, he was ranked as one of the top 5 scientists at the University of Bisha, securing the first position in the Engineering & Technology category. Dr. Kchaou’s h-index of 21 is a testament to the impact and relevance of his research in the scientific community. Furthermore, he has been recognized for his leadership and academic excellence, particularly for his significant contributions to international collaborations in research and higher education. His ability to bridge academic expertise with real-world challenges has made him a prominent figure in the engineering field, particularly in the domains of sustainability and tribology.

Conclusion

Dr. Mohamed Kchaou is a highly deserving candidate for the Academic Excellence Recognition Award. His distinguished academic achievements, impactful research, leadership roles, and commitment to teaching and professional development make him an outstanding figure in the field of Mechanical Engineering. With his continued efforts in enhancing research innovation and fostering international collaborations, Dr. Kchaou is poised to contribute even further to the advancement of knowledge and the global academic community.

Publications Top Noted

  • Oily wastewater treatment: Overview of conventional and modern methods, challenges, and future opportunities
    Authors: K Abuhasel, M Kchaou, M Alquraish, Y Munusamy, YT Jeng
    Year: 2021
    Citations: 249
  • An overview of green corrosion inhibitors for sustainable and environment friendly industrial development
    Authors: N Hossain, M Asaduzzaman Chowdhury, M Kchaou
    Year: 2021
    Citations: 198
  • Friction characteristics of a brake friction material under different braking conditions
    Authors: M Kchaou, A Sellami, R Elleuch, H Singh
    Year: 2013
    Citations: 103
  • Steam explosion as sustainable biomass pretreatment technique for biofuel production: Characteristics and challenges
    Authors: AT Hoang, XP Nguyen, XQ Duong, Ü Ağbulut, C Len, PQP Nguyen, …
    Year: 2023
    Citations: 97
  • Surface characterization and mechanical behavior of aluminum based metal matrix composite reinforced with nano Al2O3, SiC, TiO2 particles
    Authors: MBA Shuvho, MA Chowdhury, M Kchaou, BK Roy, A Rahman, MA Islam
    Year: 2020
    Citations: 91
  • Experimental investigation on the tribo-thermal properties of brake friction materials containing various forms of graphite: a comparative study
    Authors: S Manoharan, R Vijay, D Lenin Singaravelu, M Kchaou
    Year: 2019
    Citations: 89
  • Squealing characteristics of worn brake pads due to silica sand embedment into their friction layers
    Authors: ARM Lazim, M Kchaou, MKA Hamid, ARA Bakar
    Year: 2016
    Citations: 70
  • Experimental studies of friction-induced brake squeal: influence of environmental sand particles in the interface brake pad-disc
    Authors: M Kchaou, ARM Lazim, MKA Hamid, ARA Bakar
    Year: 2017
    Citations: 69
  • Failure mechanisms of H13 die on relation to the forging process–A case study of brass gas valves
    Authors: M Kchaou, R Elleuch, Y Desplanques, X Boidin, G Degallaix
    Year: 2010
    Citations: 69
  • Development and performance evaluation of eco-friendly crab shell powder based brake pads for automotive applications
    Authors: DL Singaravelu, R Vijay, S Manoharan, M Kchaou
    Year: 2019
    Citations: 63
  • Study of the interaction between microstructure, mechanical and tribo-performance of a commercial brake lining material
    Authors: A Sellami, M Kchaou, R Elleuch, AL Cristol, Y Desplanques
    Year: 2014
    Citations: 60
  • 3D-printed objects for multipurpose applications
    Authors: N Hossain, MA Chowdhury, MBA Shuvho, MA Kashem, M Kchaou
    Year: 2021
    Citations: 46
  • Water absorption and mechanical behaviour of green fibres and particles acting as reinforced hybrid composite materials
    Authors: M Kchaou, SJ Arul, A Athijayamani, P Adhikary, S Murugan, FK Aldawood, …
    Year: 2023
    Citations: 43
  • Investigation on tribological and corrosion characteristics of oxide-coated steel and mild steel fiber-based brake friction composites
    Authors: S Manoharan, R Vijay, M Kchaou
    Year: 2018
    Citations: 34
  • Surface disinfection to protect against microorganisms: Overview of traditional methods and issues of emergent nanotechnologies
    Authors: M Kchaou, K Abuhasel, M Khadr, F Hosni, M Alquraish
    Year: 2020
    Citations: 32