Domenico Di Grazia | Engineering | Industry Innovation Recognition Award

Dr. Domenico Di Grazia | Engineering | Industry Innovation Recognition Award

Principal Engineer at STMicroelectronics, Italy

Domenico Di Grazia is a seasoned GNSS Signal Senior Engineer and team leader at STMicroelectronics, recognized for his outstanding contributions to satellite navigation technology. With over two decades of experience, he has led the design and implementation of innovative algorithms for signal acquisition, tracking, and precise positioning across global constellations including GPS, Galileo, and Beidou. He holds several U.S. patents in anti-jamming, multipath mitigation, and signal reacquisition, reflecting his pioneering role in advancing GNSS solutions, particularly for autonomous driving applications. His work bridges industrial innovation and academic collaboration, as he actively mentors students and contributes to international projects and publications. While his impact in applied research and embedded system design is significant, further academic publications could enhance his scholarly visibility. Nonetheless, his leadership, technical depth, and real-world impact position him as an ideal candidate for the Research for Innovation Recognition Award, celebrating excellence in applied engineering innovation.

Professional Profile 

Education🎓

Domenico Di Grazia holds a Master’s degree in Telecommunications Engineering from the University of Naples Federico II, one of Italy’s leading technical universities. He graduated summa cum laude in July 2001, demonstrating exceptional academic performance. His thesis focused on MPEG-4 technology, developed in collaboration with Uni.Com (Telit Group), where he gained early exposure to real-world digital signal processing and multimedia systems. His foundational education provided strong expertise in digital communications, signal processing, and embedded systems—core areas that later shaped his professional focus in GNSS technology. Prior to his university studies, he completed his secondary education at Liceo Scientifico in Lagonegro, graduating with a perfect score of 60/60. Throughout his academic journey, Domenico showed a strong inclination toward innovation and research, which has seamlessly translated into his professional achievements. His education laid the groundwork for a successful career in developing cutting-edge satellite navigation technologies and collaborating on international research initiatives.

Professional Experience📝

Domenico Di Grazia brings over 20 years of professional experience in GNSS and digital signal processing, primarily at STMicroelectronics. Since joining the company in 2003, he has advanced from a software designer to the GNSS DSP Team Leader, overseeing algorithm development, chip design specifications, and cross-site team management. His work focuses on the modeling and implementation of advanced signal processing techniques for GPS, Galileo, Beidou, and other global navigation systems, with applications in high-precision positioning and autonomous driving. He has led several innovative projects, authored patents in anti-jamming, signal reacquisition, and tracking, and contributed to international collaborations and conferences. Prior to STMicroelectronics, he worked as a hardware and firmware designer at Uni.Com (Telit Group), gaining hands-on experience in DVB standards and SMART TV systems. Domenico’s career reflects a blend of deep technical expertise, leadership, and real-world impact, making him a driving force in GNSS innovation and embedded system design.

Research Interest🔎

Domenico Di Grazia’s research interests lie at the intersection of advanced signal processing, satellite navigation systems, and embedded system innovation. He specializes in the development of algorithms for GNSS signal acquisition, reacquisition, and tracking across multiple constellations, including GPS, Galileo, Beidou, and IRNSS. His focus extends to precise positioning technologies through carrier phase and pseudorange measurements, multipath mitigation, and cycle slip detection. Domenico is particularly passionate about enhancing GNSS performance in challenging environments, contributing to the evolution of anti-jamming and anti-spoofing techniques for reliable navigation. He is actively involved in designing GNSS-enabled systems for autonomous driving, integrating functional safety standards. His work emphasizes real-time implementation on embedded platforms, bridging theoretical models with practical applications. Additionally, his interest in fostering industry-academia collaboration fuels his contributions to training, mentoring, and joint research initiatives with universities, reinforcing his commitment to technological innovation and next-generation navigation systems.

Award and Honor🏆

Domenico Di Grazia has earned widespread recognition for his contributions to GNSS signal processing and satellite navigation technologies. He holds several prestigious U.S. patents, reflecting his innovative work in areas such as anti-jamming, signal reacquisition, digital demodulation, and multi-constellation satellite tracking. These patented technologies have been instrumental in advancing precise positioning and enhancing signal reliability in complex environments. In addition to his intellectual property achievements, Domenico has co-authored several influential articles published in international journals and conference proceedings, including contributions to ION and GPS World. His role as a team leader at STMicroelectronics and as a key contributor to international collaborative projects has further solidified his reputation as a global expert in GNSS technologies. Recognized within the industry for driving advancements in automotive GNSS applications, particularly for autonomous driving, Domenico’s innovations continue to impact the field. His consistent excellence and commitment make him a strong candidate for technical and research-oriented honors.

Research Skill🔬

Domenico Di Grazia possesses advanced research skills in digital signal processing, algorithm development, and satellite navigation technologies. His expertise spans modeling and real-time implementation of innovative acquisition, reacquisition, and tracking algorithms for multi-constellation GNSS systems, including GPS, Galileo, Beidou, and IRNSS. He is highly skilled in programming languages such as C, MATLAB, and Python, which he uses to develop and test complex signal processing solutions on embedded platforms. Domenico excels in applying carrier phase and pseudorange measurement techniques, multipath mitigation, and cycle slip detection to enhance GNSS accuracy and reliability. His deep understanding of anti-jamming and anti-spoofing strategies supports robust navigation systems for critical applications like autonomous driving. He also demonstrates strong collaboration and mentoring skills, contributing to research initiatives with universities and guiding young engineers. His ability to integrate theoretical research with industrial application showcases his strength as a well-rounded innovator in the field of GNSS technology.

Conclusion💡

Domenico Di Grazia is highly suitable for the Research for Innovation Recognition Award. His career exemplifies cutting-edge technological innovation, deep domain expertise, and meaningful contributions to global industries such as autonomous systems and telecommunications.

His leadership in patent-worthy research, direct real-world impact, and sustained commitment to advancing GNSS technologies make him an excellent candidate. Strengthening academic visibility and broadening interdisciplinary reach could further elevate his innovation profile.

Publications Top Noted✍️

1. Title: Putting the Synthetic Global Navigation Satellite System Meta-Signal Paradigm into Practice: Application to Automotive Market Devices
Authors: Domenico Di Grazia, Fabio Pisoni, Giovanni Gogliettino, Ciro Gioia, Daniele Borio
Year: 2025
DOI: 10.3390/engproc2025088030
Citation:
Di Grazia, D., Pisoni, F., Gogliettino, G., Gioia, C., & Borio, D. (2025). Putting the Synthetic Global Navigation Satellite System Meta-Signal Paradigm into Practice: Application to Automotive Market Devices. Engineering Proceedings, MDPI. https://doi.org/10.3390/engproc2025088030

2. Title: Combined Navigation and Tracking with Applications to Low Earth Orbit Satellites
Authors: Fabio Pisoni, Domenico Di Grazia, Giovanni Gogliettino, Thyagaraja Marathe, Paul Tarantino, Tyler Reid, Mathieu Favreau
Year: 2025
DOI: 10.3390/engproc2025088022
Citation:
Pisoni, F., Di Grazia, D., Gogliettino, G., Marathe, T., Tarantino, P., Reid, T., & Favreau, M. (2025). Combined Navigation and Tracking with Applications to Low Earth Orbit Satellites. Engineering Proceedings, MDPI. https://doi.org/10.3390/engproc2025088022

Manthan Patel | Engineering | Best Researcher Award

Mr. Manthan Patel | Engineering | Best Researcher Award

Masters at Amrita school of engineering, India

Manthan Patel is a cybersecurity professional with expertise in network security, cryptography, and cyber forensic tools. With experience at Cisco, Intel, ISRO, and Alembic Pharmacy, he has worked extensively on firewalls, VPNs, IDS/IPS, and penetration testing. He holds an M.Tech in Cyber Security (8.6 CGPA) and multiple certifications, including CCNP Security and CEH. His research includes an Active Dictionary Attack on WPA3-SAE and a binary decision tree-based firewall model, showcasing his technical acumen. While he has strong industry experience, his research output is limited, with only a few publications. To strengthen his candidacy for the Best Researcher Award, he should publish more peer-reviewed papers, secure patents, and contribute to open-source cybersecurity projects. His leadership in training and community engagement is commendable, but further global recognition is needed. With increased academic contributions, he could become a strong contender for prestigious research awards in cybersecurity.

Professional Profile 

Education🎓

Manthan Patel holds an M.Tech in Cyber Security from Amrita Vishwa Vidyapeetham University, where he graduated with an 8.6 CGPA in 2021. His postgraduate research focused on wireless security, network forensics, and firewall optimization, including projects like an Active Dictionary Attack on WPA3-SAE and a binary decision tree-based firewall model. Before that, he earned a B.E. in Electronics & Communication Engineering from SAL Institute of Technology, Gujarat Technological University, in 2017 with a 6.9 CGPA. His academic projects included a license-based vehicle ignition system using RFID technology, demonstrating his expertise in embedded systems and security. Additionally, he has attended multiple workshops on machine learning, MATLAB, and cybersecurity. Complementing his formal education, he holds industry-recognized certifications such as CCNP Security, CEH, and Fortinet NSE certifications, enhancing his expertise in network security, firewall operations, and cyber defense. His educational background forms a strong foundation for his cybersecurity career.

Professional Experience 📝

Manthan Patel has over five years of experience in network security and cybersecurity, working with leading organizations like Cisco, Intel, ISRO, and Alembic Pharmacy. Currently, he serves as a Security Technical Support Engineer at Cisco, where he specializes in firewall configuration, VPN troubleshooting, and security architecture design. Previously, as a Network Security Engineer at Intel, he played a key role in firewall infrastructure migration, proxy security setup, and VPN gateway configuration, ensuring robust security for enterprise networks. His experience also includes working as a Network Engineer at Microlink Solutions Pvt. Ltd., where he gained expertise in firewall, switch, and router configuration. He is proficient in forcepoint, Palo Alto, Fortinet, and Cisco firewalls, as well as cyber forensic tools like NMAP and Wireshark. With a strong background in troubleshooting, security policy management, and cyber defense, he has demonstrated expertise in securing enterprise IT environments against cyber threats.

Research Interest🔎

Manthan Patel’s research interests lie in the fields of network security, cloud security, cryptography, and wireless forensics. His work focuses on firewall optimization, intrusion detection, and VPN security, aiming to enhance enterprise cybersecurity frameworks. He has conducted research on Active Dictionary Attacks on WPA3-SAE, proposing a model to bypass WPA3 security using MAC address spoofing and parallel virtual machines. Additionally, he developed a binary decision tree-based packet queuing schema for next-generation firewalls, optimizing network performance by prioritizing UDP traffic in VoIP services. His expertise extends to cyber forensic tools, malware analysis, and secure network architecture design, with a keen interest in mitigating cyber threats through AI-driven security solutions. He is also passionate about cloud security protocols, VPN encryption techniques, and intrusion prevention systems (IPS/IDS). His research contributions aim to advance cybersecurity defense mechanisms by integrating machine learning and automation in network security frameworks.

Award and Honor🏆

Manthan Patel has received several awards and honors for his contributions to network security and cybersecurity research. He secured first prize in the PROJECT EXPO at SAL Campus, showcasing his innovative work in electronics and communication engineering. His expertise in Cisco Routing and Switching (CCNA) led him to serve as a tutor at Prakshal IT Academy, where he trained aspiring networking professionals. He has also been an active volunteer in the RED ROSE blood donation camp for the past three years, demonstrating his commitment to social service. His research on Active Dictionary Attacks on WPA3-SAE and next-generation firewall optimization has been recognized in academic circles. Additionally, he has attended prestigious cybersecurity workshops such as the DMML workshop at Amrita University and a MATLAB competition at SAL Cultural Festival. His dedication to technical excellence and research innovation continues to earn him accolades in the cybersecurity domain.

Research Skill🔬

Manthan Patel possesses strong research skills in network security, cloud security, cryptography, and cyber forensics. His expertise includes firewall optimization, intrusion detection/prevention systems (IDS/IPS), VPN security, and secure network architecture design. He has hands-on experience with cyber forensic tools like Wireshark and NMAP, enabling him to analyze network vulnerabilities and mitigate security threats effectively. His research on Active Dictionary Attacks on WPA3-SAE demonstrates his ability to develop innovative security models, utilizing MAC address spoofing and parallel virtual machines for enhanced attack simulations. Additionally, his work on binary decision tree-based packet queuing for next-generation firewalls showcases his analytical thinking and problem-solving abilities in network traffic optimization. He is proficient in Python and C programming, further enhancing his capacity for developing security automation tools. His ability to design, implement, and troubleshoot cybersecurity frameworks makes him a valuable contributor to advancing security research and technological innovation.

Conclusion💡

  • Manthan Patel has a strong technical and research background in cybersecurity, but his research output and global recognition need improvement.

  • If he publishes more papers, secures patents, and actively contributes to cybersecurity research, he could become a strong contender for the Best Researcher Award in the future.

Publication Top Noted✍️

  • Title: DDoS Attack Detection Model using Machine Learning Algorithm in Next Generation Firewall

  • Authors:

    • M. Patel, Manthan

    • P.P. Amritha, P. P.

    • V.B. Sudheer, Vinay B.

    • M. Sethumadhavan, Madathil

  • Citations: 3

K V Radha | Chemical Engineering | Best Researcher Award

Dr. K V Radha | Chemical Engineering | Best Researcher Award

Professor at Anna University, India

Dr. K.V. Radha, a Professor and Head of the Department of Chemical Engineering at Anna University, has over 34 years of experience in research and teaching. She holds a Ph.D. in Chemical Engineering and specializes in environmental pollution. Her research focuses on green chemistry, nanotechnology, and bioproducts for sustainability. She has completed multiple research projects, published 78 papers in reputed journals, and holds two patents. Dr. Radha has received numerous accolades, including best paper awards and innovation awards. She leads the Bio-Products Research Group, emphasizing eco-friendly innovations such as carbon capture nanocomposites and biopolymers. Her contributions extend to mentoring students, organizing research workshops, and fostering industry collaborations. With a strong publication record, high citation impact, and a commitment to sustainable development, she is a strong candidate for the Best Researcher Award, demonstrating excellence in research, innovation, and academic leadership.

Professional Profile 

Education

Dr. K.V. Radha holds a Ph.D. in Chemical Engineering from Anna University, awarded in 2007 with high commendation. She earned her M.Tech. in Biotechnology from Anna University in 1991 with distinction, achieving 75.5% marks. Her academic journey began with a B.E. in Chemical Engineering from Annamalai University in 1989, where she secured 68% marks. With a strong foundation in chemical engineering and biotechnology, she has combined her expertise to drive research in environmental pollution, green chemistry, and nanotechnology. Her academic achievements have been complemented by extensive research experience, including fellowships from CSIR and multiple travel grants for international conferences. Over the years, her education has been instrumental in shaping her career as a researcher and professor, leading groundbreaking studies in bioproducts and sustainable technologies. Her qualifications, coupled with her research contributions, establish her as a distinguished academic leader in the field of chemical engineering.

Professional Experience

Dr. K.V. Radha has over three decades of experience in chemical engineering and biotechnology, with a strong focus on research and academia. She is currently a Professor at Anna University, where she has been actively involved in teaching, research, and mentoring postgraduate and doctoral students. Throughout her career, she has led multiple research projects funded by prestigious organizations, contributing significantly to environmental pollution control, green chemistry, and nanotechnology. She has also served as a principal investigator in several industry-sponsored projects, bridging the gap between academia and industry. Her expertise has earned her numerous fellowships, including CSIR, and international travel grants for presenting her research worldwide. Additionally, she has played a key role in organizing conferences, workshops, and training programs to advance scientific knowledge. With a commitment to sustainable development and innovation, Dr. Radha continues to make impactful contributions to chemical engineering and environmental science.

Research Interest

Dr. K.V. Radha’s research interests encompass a diverse range of topics in chemical engineering, biotechnology, and environmental science. She focuses on sustainable development through green chemistry, nanotechnology, and advanced wastewater treatment methods. Her work in bioremediation and eco-friendly waste management has led to innovative solutions for industrial pollution control. She is particularly interested in developing cost-effective and energy-efficient techniques for hazardous waste treatment, including heavy metal removal and organic pollutant degradation. Additionally, she explores biofuels, bioenergy, and biodegradable materials as sustainable alternatives to conventional energy sources and plastics. Her interdisciplinary research also extends to process optimization in chemical industries, leveraging nanomaterials for enhanced catalytic applications. By integrating environmental sustainability with cutting-edge scientific advancements, Dr. Radha aims to contribute to cleaner production technologies and eco-innovations, ensuring a balance between industrial growth and environmental preservation. Her work has significant implications for both academia and industry.

Award and Honor

Dr. K.V. Radha has received numerous awards and honors in recognition of her outstanding contributions to chemical engineering, environmental sustainability, and biotechnology. She has been honored with prestigious national and international accolades for her innovative research in wastewater treatment, bioremediation, and green chemistry. Her groundbreaking work in nanotechnology and sustainable waste management has earned her recognition from academic institutions, research organizations, and industry leaders. She has received excellence awards for her significant contributions to industrial pollution control and eco-friendly processes. Dr. Radha has also been acknowledged as a distinguished researcher and keynote speaker at global conferences, where she has shared her expertise on sustainable development and environmental protection. Her dedication to advancing scientific knowledge has been recognized through fellowships, research grants, and invitations to serve on editorial boards of reputed journals. Through these accolades, she continues to inspire and contribute to the advancement of science and technology.

Research Skill

Dr. K.V. Radha possesses exceptional research skills in the fields of chemical engineering, environmental sustainability, and biotechnology. She is highly proficient in experimental design, data analysis, and scientific problem-solving, enabling her to develop innovative solutions for complex environmental challenges. Her expertise extends to nanotechnology, bioremediation, and wastewater treatment, where she has successfully conducted in-depth studies leading to significant advancements in sustainable practices. She is skilled in utilizing advanced analytical techniques, laboratory instrumentation, and computational modeling to enhance research outcomes. Dr. Radha’s ability to critically evaluate scientific literature, identify research gaps, and develop novel methodologies has been instrumental in her groundbreaking contributions. Additionally, her strong technical writing skills allow her to effectively communicate research findings in high-impact journals and conferences. She excels in interdisciplinary collaboration, grant writing, and project management, making her a valuable leader in research initiatives that promote sustainable development and environmental protection.

Conclusion

Dr. K.V. Radha is highly suitable for the Best Researcher Award based on her vast academic contributions, leadership, research achievements, and societal impact. With strong credentials, extensive publications, patents, and mentorship, she is a leading figure in chemical and environmental research. Strengthening international collaborations, patenting more innovations, and increasing citation impact would further solidify her stature as a global research leader.

Publications Top Noted

  1. Decolorization studies of synthetic dyes using Phanerochaete chrysosporium and their kinetics
    Authors: KV Radha, I Regupathi, A Arunagiri, T Murugesan
    Year: 2005
    Citations: 288

  2. Electrochemical oxidation for the treatment of textile industry wastewater
    Authors: KV Radha, V Sridevi, K Kalaivani
    Year: 2009
    Citations: 155

  3. A case study of biomedical waste management in hospitals
    Authors: KV Radha, K Kalaivani, R Lavanya
    Year: 2009
    Citations: 110

  4. A review on the adsorption studies of tetracycline onto various types of adsorbents
    Authors: SS Priya, KV Radha
    Year: 2017
    Citations: 105

  5. Synthesis of silver nanoparticles from Pseudomonas putida NCIM 2650 in silver nitrate supplemented growth medium and optimization using response surface methodology
    Authors: V Thamilselvi, KV Radha
    Year: 2013
    Citations: 70

  6. Novel production of biofuels from neem oil
    Authors: KV Radha, G Manikandan
    Year: 2011
    Citations: 62

  7. A review on the diverse application of silver nanoparticle
    Authors: V Thamilselvi, KV Radha
    Year: 2017
    Citations: 52

  8. Biosynthesis and characterization of silver nanoparticles using Enterobacter aerogenes: a kinetic approach
    Authors: C Karthik, KV Radha
    Year: 2012
    Citations: 45

  9. Review of nanobiopolymers for controlled drug delivery
    Authors: S Saranya, KV Radha
    Year: 2014
    Citations: 42

  10. Hydrodynamic behavior of inverse fluidized bed biofilm reactor for phenol biodegradation using Pseudomonas fluorescens
    Authors: S Sabarunisha Begum, KV Radha
    Year: 2014
    Citations: 39

  11. Silver nanoparticle loaded corncob adsorbent for effluent treatment
    Authors: V Thamilselvi, KV Radha
    Year: 2017
    Citations: 34

  12. Electrochemical oxidation processes
    Authors: KV Radha, K Sirisha
    Year: 2018
    Citations: 33

  13. Effect of a mixed substrate on phytase production by Rhizopus oligosporus MTCC 556 using solid state fermentation and determination of dephytinization activities
    Authors: S Suresh, KV Radha
    Year: 2015
    Citations: 31

  14. Statistical optimization and mutagenesis for high level of phytase production by Rhizopus oligosporus MTCC 556 under solid state fermentation
    Authors: S Suresh, KV Radha
    Year: 2016
    Citations: 30

Genfeng Liu | Engineering | Best Researcher Award

Dr. Genfeng Liu | Engineering | Best Researcher Award

Research Scholar at Henan University of Technology, China

Genfeng Liu is a highly qualified candidate for the Best Researcher Award, with a strong background in control science and engineering, specializing in data-driven control, adaptive control, and fault-tolerant systems. His research spans intelligent transportation, multiagent systems, and nonlinear systems, contributing to high-impact IEEE journals such as IEEE Transactions on Cybernetics (IF: 19.118) and IEEE Transactions on Neural Networks and Learning Systems (IF: 14.255). As a reviewer for leading journals, he holds strong academic credibility. His work on model-free adaptive control and cybersecurity applications demonstrates real-world relevance. To enhance his profile, he could expand international collaborations, increase industry applications, and lead large-scale research projects. While his contributions are highly significant, further engagement in technology transfer and interdisciplinary research would strengthen his impact. Overall, his extensive publication record and research influence make him a strong contender for the award, with potential for even greater contributions in the future.

Professional Profile

Education

Genfeng Liu received his Ph.D. in Control Science and Engineering from Beijing Jiaotong University, China, in 2021. His doctoral research focused on advanced control methodologies, including data-driven control, iterative learning control, and fault-tolerant control, which have significant applications in intelligent transportation and nonlinear systems. Throughout his academic journey, he developed expertise in adaptive control and multiagent systems, contributing to cutting-edge research in automation and cybernetics. His education provided a strong foundation in both theoretical and applied control engineering, enabling him to publish in prestigious IEEE journals. Additionally, his academic background equipped him with the analytical and problem-solving skills necessary to address complex challenges in system automation and intelligent control. His commitment to continuous learning and research excellence is evident in his contributions to high-impact scientific literature and his role as a reviewer for renowned international journals, solidifying his reputation as an expert in his field.

Professional Experience

Genfeng Liu is currently a Lecturer at the College of Electrical Engineering, Henan University of Technology, Zhengzhou, China. His professional experience revolves around advanced control engineering, with a focus on data-driven control, adaptive control, and fault-tolerant systems. As a researcher, he has made significant contributions to intelligent transportation systems, multiagent systems, and nonlinear control, publishing extensively in high-impact IEEE journals. Beyond his research, he actively participates in academic peer review for prestigious journals such as IEEE Transactions on Cybernetics and IEEE Transactions on Intelligent Vehicles, reinforcing his role as a respected scholar in the field. His expertise extends to supervising students and collaborating on interdisciplinary projects, bridging the gap between theoretical advancements and practical applications. His ongoing work in model-free adaptive control and cybersecurity-related control mechanisms further strengthens his impact in academia and industry, positioning him as a leader in modern control systems and intelligent automation research.

Research Interest

Genfeng Liu’s research interests lie in advanced control engineering, with a strong focus on data-driven control, adaptive control, and fault-tolerant control. His work explores iterative learning control and model-free adaptive control techniques, particularly in applications related to intelligent transportation systems, nonlinear systems, and multiagent systems. He is also interested in cybersecurity aspects of control systems, such as defense mechanisms against false data injection attacks. His research aims to enhance the efficiency, safety, and reliability of automation in modern transportation and industrial systems. By integrating artificial intelligence with control theory, he seeks to develop innovative solutions for complex, real-world engineering challenges. His studies have been published in top-tier journals, reflecting his commitment to advancing theoretical and applied knowledge in control science. Additionally, his expertise in intelligent transportation and system optimization continues to drive impactful contributions to the fields of automation, cybernetics, and industrial informatics.

Award and Honor

Genfeng Liu has received several accolades and recognition for his outstanding contributions to the field of control science and engineering. His research publications in prestigious IEEE journals, such as IEEE Transactions on Cybernetics and IEEE Transactions on Neural Networks and Learning Systems, have earned him significant recognition within the academic community. As an active reviewer for renowned international journals, he has been acknowledged for his critical evaluations and contributions to the peer-review process. His innovative work in data-driven control, adaptive control, and fault-tolerant systems has positioned him as a leading researcher in intelligent transportation and nonlinear systems. Additionally, his participation in high-profile conferences and collaborations with esteemed researchers further highlight his impact in the field. While his research achievements are commendable, pursuing national and international research grants and awards would further enhance his recognition and establish him as a distinguished leader in control engineering and automation.

Research Skill

Genfeng Liu possesses strong research skills in advanced control engineering, specializing in data-driven control, adaptive control, and fault-tolerant control. He is proficient in developing and implementing iterative learning control and model-free adaptive control strategies for complex nonlinear and multiagent systems. His expertise extends to intelligent transportation systems, where he applies innovative control techniques to enhance automation and safety. He is highly skilled in mathematical modeling, algorithm development, and system optimization, enabling him to solve real-world engineering challenges effectively. His ability to conduct in-depth theoretical analysis and translate findings into practical applications is evident in his numerous high-impact publications in top-tier IEEE journals. Additionally, his experience as a reviewer for prestigious academic journals demonstrates his critical thinking and analytical skills. His research capabilities, combined with his ability to collaborate on interdisciplinary projects, make him a valuable contributor to the fields of cybernetics, automation, and industrial informatics.

Conclusion

Genfeng Liu is a highly suitable candidate for the Best Researcher Award due to his exceptional research output, high-impact publications, and contributions to control engineering and intelligent transportation systems. To further strengthen his candidacy, increasing international collaborations, practical industry applications, and leadership roles in large-scale projects would make his research even more impactful.

Publications Top Noted

  • Title: Improved Model-Free Adaptive Predictive Control for Nonlinear Systems with Quantization Under Denial of Service Attacks
    Authors: Genfeng Liu, Jinbao Zhu, Yule Wang, Yangyang Wang
    Year: 2025
    Citation: DOI: 10.3390/sym17030471

  • Title: Adaptive Iterative Learning Fault-Tolerant Control for State Constrained Nonlinear Systems With Randomly Varying Iteration Lengths
    Authors: Genfeng Liu, Zhongsheng Hou
    Year: 2024
    Citation: DOI: 10.1109/TNNLS.2022.3185080

  • Title: Cooperative Adaptive Iterative Learning Fault-Tolerant Control Scheme for Multiple Subway Trains
    Authors: Genfeng Liu, Zhongsheng Hou
    Year: 2022
    Citation: DOI: 10.1109/TCYB.2020.2986006

  • Title: RBFNN-Based Adaptive Iterative Learning Fault-Tolerant Control for Subway Trains With Actuator Faults and Speed Constraint
    Authors: Genfeng Liu, Zhongsheng Hou
    Year: 2021
    Citation: DOI: 10.1109/TSMC.2019.2957299

  • Title: Adaptive Iterative Learning Control for Subway Trains Using Multiple-Point-Mass Dynamic Model Under Speed Constraint
    Authors: Genfeng Liu, Zhongsheng Hou
    Year: 2021
    Citation: DOI: 10.1109/TITS.2020.2970000

  • Title: A Model-Free Adaptive Scheme for Integrated Control of Civil Aircraft Trajectory and Attitude
    Authors: Gaoyang Jiang, Genfeng Liu, Hansong Yu
    Year: 2021
    Citation: DOI: 10.3390/sym13020347

  • Title: A Data-Driven Distributed Adaptive Control Approach for Nonlinear Multi-Agent Systems
    Authors: Xian Yu, Shangtai Jin, Genfeng Liu, Ting Lei, Ye Ren
    Year: 2020
    Citation: DOI: 10.1109/ACCESS.2020.3038629

  • Title: Model-Free Adaptive Direct Torque Control for the Speed Regulation of Asynchronous Motors
    Authors: Ziwei Zhang, Shangtai Jin, Genfeng Liu, Zhongsheng Hou, Jianmin Zheng
    Year: 2020
    Citation: DOI: 10.3390/pr8030333

Lubo Tang | Engineering | Best Researcher Award

Dr. Lubo Tang | Engineering | Best Researcher Award

Dr. at Central South University, China

Dr. Lubo Tang is a distinguished researcher in geotechnical engineering, specializing in dynamic grouting, multiphase flow, and CFD-DEM simulations. Currently a Ph.D. candidate at Central South University, he has made significant contributions to geotechnical drilling and fluidic oscillator technologies. His research has resulted in multiple high-impact publications in top-tier journals, including an ESI Highly Cited Paper. He holds several patents on innovative engineering solutions and has led a funded project on fluidic oscillators. Recognized with prestigious awards such as the National Scholarship and Chenguoda Scholarship, he has demonstrated academic excellence and leadership in research. His work has strong industrial relevance, particularly in cement slurry penetration and oscillatory grouting technology. To further his impact, international collaborations and industry applications could enhance global recognition. With a solid academic foundation, extensive research output, and innovative contributions, Dr. Tang stands out as a leading researcher in geotechnical engineering.

Professional Profile 

Education

Dr. Lubo Tang has a strong academic background in geotechnical and geological engineering. He is currently pursuing a Ph.D. in Geotechnical Engineering at Central South University, China, where he focuses on dynamic grouting, multiphase flow, and geotechnical drilling. Prior to this, he earned a Master’s degree in Geological Engineering from the same university, where he deepened his expertise in fluid dynamics and soil mechanics. His academic journey began at the University of Jinan, where he obtained a Bachelor’s degree in Geotechnical Engineering, laying a solid foundation in civil engineering principles. Throughout his education, Dr. Tang has actively engaged in cutting-edge research, contributing to high-impact publications and innovative engineering solutions. His academic progression reflects his commitment to advancing geotechnical engineering through rigorous study and research. His education, combined with hands-on experience in research projects and industry-relevant applications, has equipped him with the skills to make significant contributions to his field.

Professional Experience

Dr. Lubo Tang has extensive professional experience in geotechnical engineering, focusing on dynamic grouting, multiphase flow, and geotechnical drilling. As a Ph.D. candidate at Central South University, he has been actively involved in high-impact research, publishing extensively in top-tier journals and contributing to advancements in oscillatory grouting technology. He has led and participated in multiple research projects, including a university-funded study on fluidic oscillators and nationally funded projects on hydraulic propulsion systems and rock drilling mechanisms. His expertise extends to developing novel engineering solutions, holding patents for innovative fluidic oscillator devices and self-healing metro engineering technologies. Recognized for his academic excellence and leadership, he has received prestigious scholarships and awards. His work bridges the gap between theoretical research and practical applications, making significant contributions to geotechnical engineering. With a strong research foundation and industrially relevant innovations, Dr. Tang continues to advance the field through cutting-edge studies and engineering applications.

Research Interest

Dr. Lubo Tang’s research interests lie in geotechnical engineering, with a strong focus on dynamic grouting, multiphase flow, and computational fluid dynamics (CFD-DEM). His work explores the mechanics of cement slurry penetration, oscillatory grouting technology, and friction-reduction tools for geotechnical drilling. He is particularly interested in developing innovative fluidic oscillator devices and optimizing grouting techniques to enhance the efficiency of underground construction and drilling operations. His research also extends to environmental geotechnology, including air sparging remediation and wastewater treatment systems. By combining numerical simulations with experimental studies, Dr. Tang aims to improve engineering solutions for soil stabilization, tunneling, and deep foundation construction. His contributions have significant industrial applications in geotechnical infrastructure and petroleum engineering. With a strong interdisciplinary approach, he continues to push the boundaries of geotechnical research, aiming to develop more efficient and sustainable engineering solutions for complex underground environments.

Award and Honor

Dr. Lubo Tang has received numerous prestigious awards and honors in recognition of his outstanding academic achievements and contributions to geotechnical engineering. He was awarded the highly competitive National Scholarship, reflecting his excellence in research and academic performance. He also received the Chenguoda Scholarship and the First-Class Academic Scholarship at Central South University, highlighting his dedication to scholarly excellence. His academic distinction was further recognized when he was named an Outstanding Graduate and Outstanding Student at Central South University. During his undergraduate years at the University of Jinan, he secured the First-Class Academic Scholarship and was honored as an Excellent Cadre. Additionally, his research innovations earned him the First Prize in the Patent Product Competition, emphasizing his ability to translate theoretical knowledge into practical applications. His contributions to scientific research were also acknowledged through team-based honors, such as the Excellent Scientific Research Team Award. These accolades underscore his dedication to advancing geotechnical engineering.

Research Skill

Dr. Lubo Tang possesses a diverse set of research skills in geotechnical engineering, particularly in dynamic grouting, multiphase flow analysis, and computational fluid dynamics (CFD-DEM). His expertise includes numerical modeling and simulation, allowing him to analyze complex fluid-soil interactions and optimize grouting techniques for underground construction. He is proficient in experimental research, having conducted studies on slurry diffusion, cement penetration, and oscillatory grouting technology. Additionally, his strong analytical skills enable him to evaluate rheological properties of cement slurries and develop innovative fluidic oscillator devices for friction reduction in drilling operations. Dr. Tang is also skilled in designing and executing large-scale research projects, securing funding, and collaborating with interdisciplinary teams. His ability to translate theoretical research into practical engineering applications is evident in his patented innovations. With a deep understanding of geotechnical processes, advanced computational methods, and hands-on laboratory experimentation, he continues to make significant contributions to the field.

Conclusion

Lubo Tang is a highly competitive candidate for the Best Researcher Award. His strong academic background, impactful publications, patents, and funded projects demonstrate excellence in research. To further strengthen his candidacy, increasing international collaborations, expanding industry applications, and diversifying research topics could enhance his global impact. Overall, he is a well-deserving nominee for the award.

Publications Top Noted

  • Characterization of air distribution during horizontal well air sparging with various sparging tube configurations
    Authors: Liang, B., Zhang, X., Wu, Z., Tang, L., Chen, X.
    Year: 2024
    Journal: Journal of Cleaner Production
    Citations: 1

  • Cement slurry penetration behavior of swirl grouting technology
    Authors: Liang, W., Chen, X., Tang, L., Zhang, J., Zhang, X., Lin, F., Cheng, J.
    Year: 2024
    Journal: Physics of Fluids

Chafaa Maatoug Hamrouni | Engineering | Excellence in Innovation

Assoc. Prof. Dr. Chafaa Maatoug Hamrouni | Engineering | Excellence in Innovation

Associated Professor at Taif University – khurma University Collegue, Saudi Arabia

Dr. Chafaa Hamrouni, a researcher at Taif University, has made significant contributions to wireless communications, satellite technology, and fuzzy logic-based systems. His work spans various domains, including coded cooperative communication, antenna network optimization, and smart mobility management using fuzzy controllers. He has published extensively in reputed journals on topics such as MIMO antennas, metamaterials for high-isolation satellite communication, and energy recovery systems for small satellites. His expertise in congestion management, cryptographic security in cloud computing, and nanosatellite-based environmental monitoring showcases his interdisciplinary approach. His research on femto and pico satellites, including ERPSat-1, highlights innovations in intelligent power systems and antenna networks. While his work is highly innovative, expanding on real-world applications and industry collaborations could enhance its impact. Overall, his extensive research and technological advancements make him a strong candidate for the Excellence in Innovation Award, recognizing his pioneering efforts in wireless communication and space technologies.

Professional Profile 

Education

Dr. Chafaa Hamrouni has a strong academic background in engineering and telecommunications, specializing in wireless communication, antenna design, and satellite technology. He has pursued advanced studies in electrical and electronic engineering, focusing on innovative solutions for communication systems, including fuzzy logic-controlled networks and intelligent power management for small satellites. His expertise extends to areas such as signal processing, optimization techniques, and cryptographic security in cloud computing. Throughout his academic journey, Dr. Hamrouni has actively engaged in research that bridges theoretical advancements with practical applications, contributing to the development of next-generation communication and satellite technologies. His education has provided him with a solid foundation in electromagnetics, artificial intelligence applications, and network optimization, enabling him to lead cutting-edge research in these fields. His continuous pursuit of knowledge and interdisciplinary approach highlight his dedication to advancing technological frontiers, making him a prominent figure in academia and research.

Professional Experience

Dr. Chafaa Hamrouni has an extensive professional background in wireless communications, satellite technology, and intelligent systems. As a researcher at Taif University, he has contributed significantly to fields such as MIMO antennas, coded cooperative communication, and fuzzy logic-based mobility management. His work spans innovative solutions for congestion control, cryptographic security, and nanosatellite-based environmental monitoring. Dr. Hamrouni has been actively involved in the development of small satellite communication subsystems, including ERPSat-1, where he played a key role in designing intelligent power systems and antenna networks. He has collaborated with international researchers on optimization techniques for mobile networks, electromagnetic energy recovery, and high-isolation satellite antennas. His professional experience includes extensive publication in high-impact journals, conference presentations, and participation in advanced research projects. His expertise in integrating artificial intelligence with telecommunications underscores his leadership in pioneering technological advancements, making him a valuable contributor to the field of innovation and research.

Research Interest

Dr. Chafaa Hamrouni’s research interests lie at the intersection of wireless communications, satellite technology, and artificial intelligence. He focuses on developing advanced MIMO antenna systems, coded cooperative communication, and energy-efficient wireless networks. His work includes optimizing mobile network performance through fuzzy logic-based controllers and enhancing security in cloud computing using cryptographic techniques. He is particularly interested in the design and implementation of intelligent power management systems for small satellites, such as ERPSat-1, and the integration of nanosatellite technology for environmental monitoring. His studies also extend to electromagnetic energy recovery, congestion management in 5G networks, and novel optimization techniques for signal processing. Through his research, Dr. Hamrouni aims to bridge theoretical advancements with practical applications in telecommunications, aerospace, and intelligent systems. His interdisciplinary approach highlights his commitment to driving innovation in next-generation communication technologies, making significant contributions to both academic research and real-world technological advancements.

Award and Honor

Dr. Chafaa Hamrouni has been recognized for his outstanding contributions to wireless communications, satellite technology, and intelligent systems. His research excellence has earned him numerous accolades from international conferences and academic institutions. He has received recognition for his pioneering work in MIMO antenna design, cooperative communication, and fuzzy logic-based mobility management. His contributions to nanosatellite technology, particularly in the development of ERPSat-1 and intelligent power systems for small satellites, have been acknowledged by leading aerospace and telecommunications organizations. Dr. Hamrouni has been invited as a keynote speaker at prestigious conferences and has served as a reviewer for high-impact journals. His expertise in integrating artificial intelligence with telecommunications has positioned him as a leader in the field, earning him research grants and collaborations with top institutions. His achievements underscore his dedication to advancing innovation, making a lasting impact on wireless communication, satellite engineering, and next-generation network technologies.

Research Skill

Dr. Chafaa Hamrouni possesses a diverse range of research skills that span wireless communications, satellite engineering, and artificial intelligence applications. His expertise includes designing and optimizing MIMO antenna systems, developing energy-efficient wireless networks, and implementing fuzzy logic-based control systems for smart mobility and network optimization. He has extensive experience in signal processing, cryptographic security for cloud computing, and electromagnetic energy recovery for small satellites. His strong analytical and problem-solving skills enable him to conduct in-depth theoretical research while also applying innovative solutions to real-world challenges. Dr. Hamrouni is proficient in simulation and modeling tools for antenna design, network performance analysis, and intelligent control systems. His interdisciplinary approach allows him to integrate AI-driven techniques into telecommunications and aerospace engineering. His ability to collaborate across disciplines, coupled with his strong publication record, demonstrates his commitment to advancing research in cutting-edge communication and satellite technologies.

Conclusion

Dr. Chafaa Hamrouni is a strong candidate for the Excellence in Innovation Award due to his groundbreaking research in telecommunications, satellite systems, and AI-driven network optimization. His multidisciplinary approach and pioneering work on nanosatellites and fuzzy logic controllers align well with innovation criteria. However, greater industry implementation, patent filings, and leadership in tech entrepreneurship could further enhance his candidacy.

Publications Top Noted

  • Multi-Agent Mapping and Tracking-Based Electrical Vehicles with Unknown Environment Exploration

    • Authors: C. Hamrouni, A. Alutaybi, G. Ouerfelli
    • Year: 2025
  • On the Performance of Coded Cooperative Communication with Multiple Energy-Harvesting Relays and Error-Prone Forwarding

    • Authors: S. Chaoui, O. Alruwaili, C. Hamrouni, A. Alutaybi, A. Masmoudi
    • Year: 2023
    • Citations: 2
  • Six Generation Load Cells Solution Based Congestion Management Control Purpose

    • Authors: C. Hamrouni, A. Alutaybi
    • Year: 2023
  • A New Fuzzy Controlled Antenna Network Proposal for Small Satellite Applications

    • Authors: C. Hamrouni
    • Year: 2022
    • Citations: 1
  • Various Antenna Structures Performance Analysis Based on Fuzzy Logic Functions

    • Authors: C. Hamrouni, A. Alutaybi, S. Chaoui
    • Year: 2022
    • Citations: 5
  • 5G Smart Mobility Management Based Fuzzy Logic Controller Unit

    • Authors: C. Hamrouni, S. Chaoui
    • Year: 2021
    • Citations: 2
  • New Trend Proposal in Optimization Techniques Application for Mobile Network, Analysis, and Signal Processing

    • Authors: C. Hamrouni
    • Year: 2020
  • UWB-MIMO Array Antennas with DGS Decoupling Structure

    • Authors: C. Abdelhamid, M. Daghari, C. Hamrouni, H. Sakli
    • Year: 2020
    • Citations: 1
  • Complex ESP Systems Proposal Based on Pump Syringe and Electronically Injector Modules for Medical Application

    • Authors: C. Hamrouni
    • Year: 2020
    • Citations: 1
  • A New UWB-MIMO Multi-Antennas with High Isolation for Satellite Communications

    • Authors: C. Abdelhamid, M. Daghari, H. Sakli, C. Hamrouni
    • Year: 2019
    • Citations: 13
  • High Isolation with Metamaterial Improvement in a Compact UWB MIMO Multi-Antennas

    • Authors: C. Abdelhamid, M. Daghari, H. Sakli, C. Hamrouni
    • Year: 2019
    • Citations: 9
  • A Joint Source Channel Decoding for Image Transmission

    • Authors: S. Chaoui, O. Ouda, C. Hamrouni
    • Year: 2019
    • Citations: 8

Amr Shafik | Engineering | Best Researcher Award

Mr. Amr Shafik | Engineering | Best Researcher Award

Civil Engineering Department at Virginia Tech, United States

Amr Shafik is a dedicated researcher specializing in transportation systems engineering, with over seven years of academic and industry experience in transportation planning, traffic engineering, and intelligent mobility solutions. Currently a Ph.D. candidate in Civil and Environmental Engineering at Virginia Tech, his research focuses on optimizing eco-driving systems for connected and automated vehicles, stochastic traffic signal control, and predictive modeling. He has published extensively in IEEE Transactions on Intelligent Transportation Systems and presented at prestigious conferences such as the IEEE Smart Mobility Conference and the Transportation Research Board Annual Meetings. Amr has collaborated with global organizations like the World Bank and EBRD on large-scale mobility projects. With expertise in simulation modeling, data science, and machine learning, he contributes to sustainable transportation innovations. Additionally, he has extensive teaching experience, mentoring students in traffic engineering and transportation planning. His technical skills include Python, R, AutoCAD, GIS, and advanced traffic simulation tools.

Professional Profile

Education

Amr Shafik holds a strong academic background in transportation engineering and data-driven mobility solutions. He is currently pursuing a Ph.D. in Civil and Environmental Engineering at Virginia Tech, where his research focuses on eco-driving optimization for connected and automated vehicles, stochastic traffic signal control, and predictive modeling. He earned his Master’s degree in Transportation Engineering from Cairo University, where he specialized in traffic flow theory, simulation modeling, and intelligent transportation systems. His thesis explored data-driven approaches to optimizing urban traffic networks. Prior to that, he completed his Bachelor’s degree in Civil Engineering from Cairo University with distinction, laying the foundation for his expertise in infrastructure design, traffic analysis, and sustainable mobility. Throughout his academic journey, he has engaged in interdisciplinary research, collaborated with global institutions, and honed advanced technical skills in Python, GIS, and transportation simulation tools. His education equips him to tackle real-world transportation challenges with innovative solutions.

Professional Experience

Amr Shafik has extensive professional experience in transportation engineering, data-driven mobility solutions, and intelligent transportation systems. He has worked as a Research Assistant at Virginia Tech, contributing to projects on eco-driving optimization, stochastic traffic signal control, and predictive modeling for connected and automated vehicles. Prior to this, he served as a Transportation Engineer at a leading consultancy, where he specialized in traffic flow analysis, microsimulation modeling, and urban mobility planning. His expertise extends to working with big data analytics, GIS applications, and machine learning for transportation systems. He has collaborated with government agencies and research institutions to develop sustainable and efficient mobility solutions. Additionally, he has experience in teaching and mentoring students in transportation engineering concepts. His strong analytical skills, combined with his hands-on experience in software tools like Python, MATLAB, and traffic simulation platforms, position him as a key contributor to the advancement of smart and sustainable transportation networks.

Research Interest

Amr Shafik’s research interests lie at the intersection of transportation engineering, intelligent mobility, and data-driven traffic management. He focuses on optimizing traffic flow and enhancing transportation efficiency through connected and automated vehicle technologies, eco-driving strategies, and stochastic traffic signal control. His work integrates machine learning, big data analytics, and artificial intelligence to develop predictive models for traffic behavior and mobility patterns. He is particularly interested in sustainable urban transportation, leveraging smart mobility solutions to reduce congestion, emissions, and energy consumption. His research also explores the application of Geographic Information Systems (GIS) and simulation modeling in transportation planning. By collaborating with industry partners and academic institutions, he aims to contribute to the development of next-generation intelligent transportation systems that improve safety, efficiency, and environmental sustainability. His passion for innovation and interdisciplinary research drives him to address real-world transportation challenges through advanced computational and analytical techniques.

Awards and honor

Amr Shafik has received numerous awards and honors in recognition of his contributions to transportation engineering and intelligent mobility research. He has been honored with prestigious research grants and fellowships for his work on data-driven traffic management and sustainable transportation solutions. His innovative research has earned him accolades at international conferences, where he has received Best Paper and Outstanding Research awards. He has also been recognized by professional engineering societies for his significant advancements in traffic optimization and eco-driving strategies. Additionally, he has been awarded competitive scholarships for academic excellence and leadership in the field of intelligent transportation systems. His contributions to collaborative projects with industry and government agencies have further solidified his reputation as a leading researcher in the field. Through his dedication to advancing transportation science, Amr Shafik continues to receive recognition for his impactful work in shaping the future of smart and sustainable mobility solutions.

Research skill

Amr Shafik possesses a diverse set of research skills that contribute to his expertise in transportation engineering and intelligent mobility solutions. He excels in data analysis, statistical modeling, and machine learning applications for traffic flow optimization and predictive analytics. His proficiency in programming languages such as Python, MATLAB, and R enables him to develop advanced algorithms for real-time traffic monitoring and control. He is skilled in using Geographic Information Systems (GIS) and simulation software like VISSIM and SUMO to model transportation networks and assess the impact of smart mobility solutions. Additionally, he has a strong background in sensor data processing and Internet of Things (IoT) applications for connected and autonomous vehicles. His ability to conduct interdisciplinary research, collaborate with industry stakeholders, and publish high-impact studies demonstrates his analytical thinking, problem-solving abilities, and dedication to innovation in the field of intelligent transportation systems and sustainable urban mobility.

Conclusion

Amr Shafik is a strong candidate for the Best Researcher Award due to his extensive contributions to transportation engineering, expertise in traffic optimization, and impactful research in connected and automated vehicles. His impressive academic and industry experience, along with publications in top-tier conferences and journals, showcases his research excellence. To further strengthen his profile, expanding interdisciplinary collaborations, securing independent research funding, and pursuing patents or industry partnerships would be beneficial.

Publications Top Noted

  • Optimization of vehicle trajectories considering uncertainty in actuated traffic signal timings

    • Authors: AK Shafik, S Eteifa, HA Rakha
    • Year: 2023
    • Citations: 19
  • Queue Length Estimation and Optimal Vehicle Trajectory Planning Considering Queue Effects at Actuated Traffic Signal Controlled Intersections

    • Authors: A Shafik, H Rakha
    • Year: 2024
    • Citations: 5
  • Environmental Impacts of MSW Collection Route Optimization Using GIS: A Case Study of 10th of Ramadan City, Egypt

    • Authors: A Shafik, M Elkhedr, D Said, A Hassan
    • Year: 2022
    • Citations: 4
  • Integrated Back of Queue Estimation and Vehicle Trajectory Optimization Considering Uncertainty in Traffic Signal Timings

    • Authors: AK Shafik, HA Rakha
    • Year: 2024
    • Citations: 3
  • Optimal Trajectory Planning Algorithm for Connected and Autonomous Vehicles Towards Uncertainty of Actuated Traffic Signals

    • Authors: A Shafik, S Eteifa, HA Rakha, E Center
    • Year: 2023
    • Citations: 3
  • Development of Online VISSIM Traffic Microscopic Calibration Framework Using Artificial Intelligence for Cairo CBD Area

    • Authors: AK Shafik, A Hassan, AM Saied, AE & Abdelmegeed
    • Year: 2022
    • Citations: 2
  • Deep Learning Ensemble Approach for Predicting Expected and Confidence Levels of Traffic Signal Switch Times

    • Authors: S Eteifa, AK Shafik, H Eldardiry, HA Rakha
    • Year: 2024
    • Citations: 1
  • Kalman Filter-based Real-Time Traffic State Estimation and Prediction using Vehicle Probe Data

    • Authors: AK Shafik, HA Rakha
    • Year: 2024
    • Citations: 1
  • Enhancing and Evaluating a Decentralized Cycle-Free Game-Theoretic Adaptive Traffic Signal Controller on an Isolated Signalized Intersection

    • Authors: AK Shafik, HA Rakha
    • Year: 2024
    • Citations: 1
  • Real-Time Turning Movement, Queue Length, and Traffic Density Estimation and Prediction Using Vehicle Trajectory and Stationary Sensor Data

    • Authors: AK Shafik, HA Rakha
    • Year: 2025
    • Citations: N/A
  • Deep Learning Ensemble Approach for Predicting Expected and Confidence Levels of Signal Phase and Timing Information at Actuated Traffic Signals

    • Authors: S Eteifa, A Shafik, H Eldardiry, HA Rakha
    • Year: 2025
    • Citations: N/A
  • Real-Time Turning Movement, Queue Length and Traffic Density Estimation and Prediction from Probe Vehicle Data: A Kalman Filter Approach

    • Authors: A Shafik, HA Rakha
    • Year: 2025
    • Citations: N/A
  • Decentralized Cycle-Free Game-Theoretic Adaptive Traffic Signal Control: Model Enhancement and Testing on Isolated Signalized Intersections

    • Authors: AK Shafik, HA Rakha
    • Year: 2024
    • Citations: N/A
  • Real-Time Traffic State Estimation and Short-Term Prediction Using Probe Vehicle Data: A Kalman Filter Approach

    • Authors: A Shafik, H Rakha
    • Year: 2024
    • Citations: N/A
  • Queue Estimation and Consideration in Vehicle Trajectory Optimization at Actuated Signalized Intersections

    • Authors: AK Shafik, HA Rakha
    • Year: 2024
    • Citations: N/A

Zhenyan Xia | Engineering | New Horizons Science Invention Award

Mr. Zhenyan Xia | Engineering | New Horizons Science Invention Award

Associate Professor at Tianjin University, China

Xia Zhenyan is an Associate Professor at Tianjin University, specializing in fluid mechanics, molecular dynamics, and physical chemistry. With extensive experience in turbulent flow control, fluid flow instability, and micronano structures, he has led and contributed to 18+ research projects funded by prestigious national and industrial organizations, including the National Natural Science Foundation of China (NSFC) and the 863 Program. His innovative research on superhydrophobic surfaces has introduced novel methods to reduce droplet contact time by 37%, with applications in engineering, coatings, and energy systems. He has published over 50 research papers in high-impact journals, contributing significantly to the advancement of his field.

Professional Profile

Education

Xia Zhenyan holds advanced degrees in mechanical engineering and fluid mechanics from Tianjin University. His academic training provided a strong foundation in theoretical modeling, computational fluid dynamics (CFD), and materials science, shaping his research focus on fluid flow behavior and molecular interactions. His educational background has enabled him to bridge the gap between fundamental research and real-world applications, particularly in engineering solutions involving microfluidics, nanotechnology, and hydrophobic surface design.

Professional Experience

Currently serving as an Associate Professor at the School of Mechanical Engineering, Tianjin University, Xia Zhenyan is also the Deputy Director of the Department of Mechanics. His professional career is marked by multidisciplinary research collaborations in fluid dynamics, advanced materials, and computational modeling. As the Principal Investigator (PI) of multiple national research projects, he has played a key role in developing innovative solutions for industrial fluid mechanics challenges. His expertise extends to engineering applications for energy-efficient materials, hydrodynamics, and smart surface technology, making him a recognized leader in his field.

Research Interests

Xia Zhenyan’s research focuses on fluid mechanics, molecular dynamics, and physical chemistry, with a particular interest in turbulent flow control, fluid flow instability, and micronano-structured surfaces. His work explores the theoretical and engineering applications of molecular dynamics in fluid interactions, contributing to advancements in superhydrophobic coatings, energy-efficient materials, and microfluidics. A key aspect of his research involves developing novel techniques to reduce droplet contact time on surfaces, which has potential applications in biomedical engineering, aerospace, and industrial coatings. His interdisciplinary approach integrates computational simulations, experimental studies, and theoretical modeling, driving innovations in fluid behavior prediction, nanotechnology applications, and hydrodynamic performance enhancement.

Awards and Honors

Xia Zhenyan has been recognized for his outstanding contributions to fluid mechanics and molecular dynamics through multiple national and institutional awards. His research projects have received funding from prestigious organizations, including the National Natural Science Foundation of China (NSFC) and the 863 Program, highlighting the significance of his work. His publications in high-impact journals such as Physics of Fluids and Computational Materials Science have earned him academic recognition. As a Principal Investigator (PI) of multiple groundbreaking projects, he has been honored for excellence in scientific innovation and engineering applications. Additionally, his role as Deputy Director of the Department of Mechanics at Tianjin University reflects his leadership in advancing mechanical engineering and fluid dynamics research.

Conclusion

Dr. Mohamed Kchaou is a highly deserving candidate for the Academic Excellence Recognition Award. His distinguished academic achievements, impactful research, leadership roles, and commitment to teaching and professional development make him an outstanding figure in the field of Mechanical Engineering. With his continued efforts in enhancing research innovation and fostering international collaborations, Dr. Kchaou is poised to contribute even further to the advancement of knowledge and the global academic community.

Publications Top Noted

  • Shi, H., Xu, H., Bai, Y., Xia, Z. (2025). The effect of superhydrophobic surfaces with circular ring on the contact time of droplet impact. Colloids and Surfaces A: Physicochemical and Engineering Aspects. Citations: 0
  • Shi, H., Hou, X., Xu, H., Bai, Y., Xia, Z. (2024). An analysis of the contact time of nanodroplets impacting superhydrophobic surfaces with square ridges. Computational Materials Science. Citations: 0
  • Tai, Y., Xu, H., Bai, Y., Wang, S., Xia, Z. (2022). Experimental investigation of the impact of viscous droplets on superamphiphobic surfaces. Physics of Fluids, 34(2), 022101. Citations: 8
  • Yan, K., Guo, X., Xia, Z. (2021). The experimental study on the characteristics of turbulent boundary layer based on the PIV technology of non-uniform interrogation window. Chinese Journal of Applied Mechanics, 38(4), pp. 1293–1300. Citations: 2
  • Tai, Y., Zhao, Y., Guo, X., Wang, S., Xia, Z. (2021). Research on the contact time of a bouncing microdroplet with lattice Boltzmann method. Physics of Fluids, 33(4), 042011. Citations: 11
  • Xia, Z., Zhao, Y., Yang, Z., Wang, S., Wang, M. (2021). The simulation of droplet impact on the super-hydrophobic surface with micro-pillar arrays fabricated by laser irradiation and silanization processes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 612, 125966. Citations: 22
  • Xia, Z., Xiao, Y., Yang, Z., Liu, X., Tian, Y. (2019). Droplet impact on the super-hydrophobic surface with micro-pillar arrays fabricated by hybrid laser ablation and silanization process. Materials, 12(5), 765. Citations: 27
  • Xia, Z., Li, Z., Li, J., Tian, Y. (2016). An experimental study on breakup characteristics of impinging jets. Journal of Tianjin University Science and Technology, 49(7), pp. 770–776. Citations: 6
  • Xu, L., Xia, Z., Zhang, M., Du, Q., Bai, F. (2015). Experimental research on breakup of 2D power law liquid film. Chinese Journal of Chemical Engineering, 23(9), pp. 1429–1439. Citations: 3
  • Li, J.-J., Xia, Z.-Y., Tian, Y. (2015). Experiment on breakup mechanism of impinging jet of power-law liquid. Journal of Aerospace Power, 30(7), pp. 1752–1758. Citations: 1

Mohamed Kchaou | Engineering | Academic Excellence Recognition Award

Prof. Dr. Mohamed Kchaou | Engineering | Academic Excellence Recognition Award

Professeur at Department of Engineering, College of Engineering, University of Bisha, Saudi Arabia

Dr. Mohamed Kchaou is a Professor of Mechanical Engineering at the University of Bisha, Saudi Arabia, specializing in sustainability and research. He holds an impressive academic background, with an h-index of 21 and significant professional achievements, including a nomination for Full Membership in Sigma Xi, The Scientific Research Honor Society. His work has earned him recognition as one of the top 5 scientists at the University of Bisha in 2025, ranked first in Engineering & Technology. In addition to his academic roles, he contributes to international relations, scientific research, and graduate studies. He has worked in various international institutions and is recognized for his leadership in the academic and research communities, particularly in mechanical engineering, tribology, and innovation.

Professional Profile

Education 

Dr. Kchaou earned his Ph.D. in Mechanical Engineering from the Ecole Centrale of Lille (France) and the University of Sfax (Tunisia) in 2010. His thesis focused on the coupling friction oxidation effect on the wear of H13 steel, specifically for hot forging applications. He completed his Master’s degree in Mechanics and Engineering from the National School of Engineers of Sfax in 2007, where he studied performance and damage in a copper alloy under torsion fatigue. His academic journey began with a Bachelor’s in Electromechanical Engineering from the National School of Engineers of Sfax in 2006. His educational foundation laid the groundwork for his expertise in tribology, sustainability, and materials science.

Professional Experience

Dr. Kchaou holds a distinguished academic career, currently serving as a full Professor at the University of Bisha, where he also plays an integral role as a Consultant to the Deputy Vice-Chancellor for Graduate Studies and Scientific Research. His leadership in international relations and research partnerships has made significant impacts on the university. Previously, he served as the Vice-Dean at the Higher Institute of Arts and Crafts of Sfax and has been involved with several prestigious universities across Europe, including in France, Spain, and Turkey. Throughout his career, he has held various positions ranging from Assistant Professor to Associate Professor, delivering impactful courses in materials science, industrial management, and mechanical engineering at different international institutions. Dr. Kchaou’s diverse academic and administrative roles reflect his expertise and commitment to advancing engineering education and research.

Research Interests

Dr. Mohamed Kchaou’s research primarily focuses on sustainability, tribology, and the performance of materials in mechanical engineering. His work explores the friction oxidation effects on wear and tear, especially in the context of hot forging applications, aiming to improve the durability and efficiency of materials under extreme conditions. He is also interested in the development and optimization of new materials, particularly in relation to mechanical behavior and damage tolerance under different loading conditions. Dr. Kchaou’s expertise spans multiple aspects of materials science, including fatigue behavior, wear mechanisms, and the interplay between mechanical properties and environmental factors. He has a keen interest in applying these insights to various industries, such as automotive and manufacturing, to promote energy-efficient and environmentally sustainable solutions. His research contributes to advancing both theoretical knowledge and practical applications in materials engineering and mechanical systems.

Awards and Honors

Dr. Mohamed Kchaou has earned numerous prestigious awards and honors throughout his academic career. Notably, he has been nominated for Full Membership in Sigma Xi, The Scientific Research Honor Society, recognizing his significant contributions to the field of mechanical engineering. In 2025, he was ranked as one of the top 5 scientists at the University of Bisha, securing the first position in the Engineering & Technology category. Dr. Kchaou’s h-index of 21 is a testament to the impact and relevance of his research in the scientific community. Furthermore, he has been recognized for his leadership and academic excellence, particularly for his significant contributions to international collaborations in research and higher education. His ability to bridge academic expertise with real-world challenges has made him a prominent figure in the engineering field, particularly in the domains of sustainability and tribology.

Conclusion

Dr. Mohamed Kchaou is a highly deserving candidate for the Academic Excellence Recognition Award. His distinguished academic achievements, impactful research, leadership roles, and commitment to teaching and professional development make him an outstanding figure in the field of Mechanical Engineering. With his continued efforts in enhancing research innovation and fostering international collaborations, Dr. Kchaou is poised to contribute even further to the advancement of knowledge and the global academic community.

Publications Top Noted

  • Oily wastewater treatment: Overview of conventional and modern methods, challenges, and future opportunities
    Authors: K Abuhasel, M Kchaou, M Alquraish, Y Munusamy, YT Jeng
    Year: 2021
    Citations: 249
  • An overview of green corrosion inhibitors for sustainable and environment friendly industrial development
    Authors: N Hossain, M Asaduzzaman Chowdhury, M Kchaou
    Year: 2021
    Citations: 198
  • Friction characteristics of a brake friction material under different braking conditions
    Authors: M Kchaou, A Sellami, R Elleuch, H Singh
    Year: 2013
    Citations: 103
  • Steam explosion as sustainable biomass pretreatment technique for biofuel production: Characteristics and challenges
    Authors: AT Hoang, XP Nguyen, XQ Duong, Ü Ağbulut, C Len, PQP Nguyen, …
    Year: 2023
    Citations: 97
  • Surface characterization and mechanical behavior of aluminum based metal matrix composite reinforced with nano Al2O3, SiC, TiO2 particles
    Authors: MBA Shuvho, MA Chowdhury, M Kchaou, BK Roy, A Rahman, MA Islam
    Year: 2020
    Citations: 91
  • Experimental investigation on the tribo-thermal properties of brake friction materials containing various forms of graphite: a comparative study
    Authors: S Manoharan, R Vijay, D Lenin Singaravelu, M Kchaou
    Year: 2019
    Citations: 89
  • Squealing characteristics of worn brake pads due to silica sand embedment into their friction layers
    Authors: ARM Lazim, M Kchaou, MKA Hamid, ARA Bakar
    Year: 2016
    Citations: 70
  • Experimental studies of friction-induced brake squeal: influence of environmental sand particles in the interface brake pad-disc
    Authors: M Kchaou, ARM Lazim, MKA Hamid, ARA Bakar
    Year: 2017
    Citations: 69
  • Failure mechanisms of H13 die on relation to the forging process–A case study of brass gas valves
    Authors: M Kchaou, R Elleuch, Y Desplanques, X Boidin, G Degallaix
    Year: 2010
    Citations: 69
  • Development and performance evaluation of eco-friendly crab shell powder based brake pads for automotive applications
    Authors: DL Singaravelu, R Vijay, S Manoharan, M Kchaou
    Year: 2019
    Citations: 63
  • Study of the interaction between microstructure, mechanical and tribo-performance of a commercial brake lining material
    Authors: A Sellami, M Kchaou, R Elleuch, AL Cristol, Y Desplanques
    Year: 2014
    Citations: 60
  • 3D-printed objects for multipurpose applications
    Authors: N Hossain, MA Chowdhury, MBA Shuvho, MA Kashem, M Kchaou
    Year: 2021
    Citations: 46
  • Water absorption and mechanical behaviour of green fibres and particles acting as reinforced hybrid composite materials
    Authors: M Kchaou, SJ Arul, A Athijayamani, P Adhikary, S Murugan, FK Aldawood, …
    Year: 2023
    Citations: 43
  • Investigation on tribological and corrosion characteristics of oxide-coated steel and mild steel fiber-based brake friction composites
    Authors: S Manoharan, R Vijay, M Kchaou
    Year: 2018
    Citations: 34
  • Surface disinfection to protect against microorganisms: Overview of traditional methods and issues of emergent nanotechnologies
    Authors: M Kchaou, K Abuhasel, M Khadr, F Hosni, M Alquraish
    Year: 2020
    Citations: 32

Miroslav Kelemen | Engineering | Best Researcher Award

Prof. Dr. Miroslav Kelemen | Engineering | Best Researcher Award

Vice-Rector for Education at TECHNICAL UNIVERSITY OF KOSICE, FACULTY OF AERONAUTICS , Slovakia

Miroslav Kelemen is an experienced aviation professional with over 22 years of expertise as a pilot, flight instructor, and air traffic controller. With a solid background in managerial roles, including his time as an Air Force Base Commander, Kelemen has developed a deep understanding of aviation education, flight training, aeronautical engineering, and air transport systems. His research interests encompass interdisciplinary topics such as decision-making processes, risk assessment, human performance, and safety in transportation. He has also contributed to studies on the impact of aviation activities on the environment and health, small and medium enterprises in transport and tourism, and innovations in aviation education. Kelemen holds key academic positions, including Vice-Rector for Education at the Technical University of Košice, where he continues to shape the future of aviation education.

Professional Profile

Education

Kelemen’s educational journey is distinguished by numerous advanced degrees and specialized training. He holds a DrSc. from Slovenská komisia pre vedecké hodnosti, Bratislava, and a Ph.D. from the Air Force Academy Košice in flight training. Additionally, Kelemen obtained his Associate Professorship at the University of Žilina, Slovakia. His academic qualifications are complemented by his professorship at the Academy of the Police Force in Bratislava, focusing on public administration and crisis management. His rigorous education laid the foundation for his multifaceted expertise in aviation, air transport, and safety, influencing both academic curricula and industry standards.

Professional Experience

Kelemen’s professional experience spans across various roles in aviation and academia. Since 2018, he has served as a Professor at the Faculty of Aeronautics, Technical University of Košice, where he specializes in flight training. In August 2023, he became the Vice-Rector for Education at the university, overseeing educational reforms and initiatives. Kelemen’s previous leadership role as an Air Force Base Commander allowed him to hone his managerial skills in high-pressure environments. His career also includes significant work in air traffic control, aviation safety, and flight training, contributing to both military and civil aviation sectors.

Research Interests

Miroslav Kelemen’s research interests are broad and interdisciplinary, with a strong focus on aviation education, flight training, and air transport systems. His work delves into decision-making processes, risk assessment, and human performance in transportation, particularly in aviation. He is deeply invested in understanding the environmental and health impacts of aviation activities, exploring sustainable practices and innovations in aviation. Kelemen also studies small and medium enterprises in transport, logistics, and tourism, with an emphasis on their role in economic development. His research is grounded in applying advanced methodologies, including fuzzy decision support models and artificial intelligence, to address complex challenges in aviation and related fields. Through these studies, Kelemen contributes to the improvement of aviation safety, security, and overall operational efficiency.

Awards and Honors

Throughout his career, Miroslav Kelemen has received numerous accolades for his academic and professional contributions to aviation and transport. He has been recognized for his pioneering work in flight training, risk assessment, and aviation education, earning him a reputation as a leader in these fields. His involvement in interdisciplinary research has garnered recognition from various academic and industry bodies. Kelemen’s achievements extend beyond the classroom, with contributions to publications in respected journals and books, further solidifying his influence in academia. His expertise in aviation safety and the impact of aviation on human health and the environment has earned him prestigious awards and honors, reflecting his commitment to advancing both the academic and practical aspects of aviation.

Publications Top Noted

  • A fuzzy model of risk assessment for environmental start-up projects in the air transport sector
    Authors: V. Polishchuk, M. Kelemen, B. Gavurová, C. Varotsos, R. Andoga, M. Gera, …
    Year: 2019
    Citation Count: 76
  • Fuzzy model for quantitative assessment of environmental start-up projects in air transport
    Authors: M. Kelemen, V. Polishchuk, B. Gavurová, S. Szabo, R. Rozenberg, M. Gera, …
    Year: 2019
    Citation Count: 67
  • Expert model of risk assessment for the selected components of smart city concept: From safe time to pandemics as COVID-19
    Authors: B. Gavurova, M. Kelemen, V. Polishchuk
    Year: 2022
    Citation Count: 59
  • The suitability of UAS for mass movement monitoring caused by Torrential Rainfall—A study on the Talus Cones in the Alpine Terrain in High Tatras, Slovakia
    Authors: R. Urban, M. Štroner, P. Blistan, Ľ. Kovanič, M. Patera, S. Jacko, I. Ďuriška, …
    Year: 2019
    Citation Count: 53
  • Monitoring of low-level wind shear by ground-based 3D lidar for increased flight safety, protection of human lives and health
    Authors: P. Nechaj, L. Gaál, J. Bartok, O. Vorobyeva, M. Gera, M. Kelemen, …
    Year: 2019
    Citation Count: 46
  • Patterns of interdependence between financial development, fiscal instruments, and environmental degradation in developed and converging EU countries
    Authors: M. Zioło, K. Kluza, J. Kozuba, M. Kelemen, P. Niedzielski, P. Zinczak
    Year: 2020
    Citation Count: 36
  • Technology improving safety of crowdfunding platforms functioning in the context of the protection of the start-up investors in the financial and transport sectors
    Authors: V. Polishchuk, M. Kelemen, J. Kozuba
    Year: 2019
    Citation Count: 30
  • Enhancing of security on critical accident locations using telematics support
    Authors: R. Dvorak, Z. Cekerevac, Z. Kelemen, M. Sousek
    Year: 2010
    Citation Count: 30
  • Security Management Education and Training of Critical Infrastructure Sectors’ Experts
    Authors: M. Kelemen, J. Jevčák
    Year: 2018
    Citation Count: 29
  • Assessing the contribution of data mining methods to avoid aircraft run-off from the runway to increase the safety and reduce the negative environmental impacts
    Authors: O. Vorobyeva, J. Bartok, P. Šišan, P. Nechaj, M. Gera, M. Kelemen, …
    Year: 2020
    Citation Count: 28