Trong Nhan Nguyen | Artificial Intelligence | Best Researcher Award

Mr. Trong Nhan Nguyen | Artificial Intelligence | Best Researcher Award

Biomedical Engineering at Pukyong National University, South Korea

Nhan T. Nguyen, a Master’s student at Pukyong National University, is a promising early-career researcher specializing in biomedical engineering, computer vision, and artificial intelligence. His research focuses on non-destructive testing, low-level vision, and automated inspection systems using advanced AI techniques such as GANs, transformers, and diffusion models. Nhan has contributed to multiple peer-reviewed publications in prestigious journals like IEEE Transactions and MDPI Applied Sciences, with additional manuscripts under review and in preparation. His work demonstrates strong practical relevance, with AI models deployed in industrial applications including semiconductor inspection, robotic automation, and smart city infrastructure. He has received several academic honors and awards, reflecting his dedication and innovation. Despite being at the master’s level, he serves as a peer reviewer for international journals and conferences, highlighting his scholarly maturity. With interdisciplinary expertise, a growing publication record, and impactful real-world applications, Nhan is highly suitable for the Best Researcher Award in the early-career category.

Professional Profile 

Education🎓

Nhan T. Nguyen has built a strong educational foundation in engineering and artificial intelligence across reputable institutions in Vietnam and South Korea. He earned his Bachelor of Science degree in Information Technology Engineering from Ho Chi Minh University of Technology, where he was actively involved in undergraduate research and received multiple academic awards and scholarships. During his undergraduate years, he developed projects integrating AI with OCR and chatbot systems. Currently, he is pursuing a Master’s degree in the Industry 4.0 Convergence Bionics Engineering program at Pukyong National University in South Korea under the supervision of Professor Junghwan Oh. His graduate research focuses on non-destructive testing, specifically in scanning acoustic microscopy systems, and applying AI to industrial inspection tasks. Through this academic journey, Nhan has gained in-depth knowledge and hands-on experience in computer vision, machine learning, and robotics, forming a strong educational background that supports his innovative contributions to research and industry applications.

Professional Experience📝

Nhan T. Nguyen has gained diverse professional experience in the fields of artificial intelligence, computer vision, and industrial automation. He served as an AI Engineer at the Artificial Intelligence Center of FPT Software in Vietnam, where he worked on optimizing dehumidification processes for the Chicago Art Museum and enhancing defect detection in steel production using machine learning algorithms. His role involved data analysis, predictive modeling, and AI deployment in real-world environments. He also contributed to a deep learning-based search engine enhancement project for a pharmaceutical retail company. In addition, at FPT Information System’s Smart City Department, he developed camera-based systems for sidewalk encroachment detection, which were integrated into Ho Chi Minh City’s traffic management system. Currently, as a Graduate Research Assistant at Pukyong National University, he is involved in automating weld inspection systems and developing AI models for defect detection in scanning acoustic microscopy. His experience bridges academic research and practical industrial implementation.

Research Interest🔎

Nhan T. Nguyen’s research interests lie at the intersection of artificial intelligence, computer vision, and industrial automation, with a particular focus on low-level vision tasks and non-destructive testing. He is passionate about developing advanced AI models such as Generative Adversarial Networks (GANs), transformers, and diffusion models for applications in image restoration, super-resolution, and defect detection. His work emphasizes enhancing the performance and reliability of automated inspection systems used in semiconductor manufacturing, steel production, and other industrial settings. Nhan is also interested in integrating AI with robotic systems, using tools like 3D scanners, lasers, and cameras to automate surface inspection processes. Additionally, he explores exploratory data analysis across multiple domains, including medical, environmental, and industrial datasets. His goal is to bridge the gap between theoretical research and practical implementation, contributing to more intelligent, accurate, and efficient inspection and monitoring systems in smart manufacturing and biomedical engineering environments.

Award and Honor🏆

Nhan T. Nguyen has received numerous awards and honors in recognition of his academic excellence, innovative research, and technical achievements. He was awarded a scholarship by Pukyong National University in 2023 for his outstanding performance as a graduate student. During his undergraduate studies at Ho Chi Minh University of Technology, he received the prestigious KMS Technology Scholarship in 2022, as well as the City Now Company Scholarship and the Impressive Award in the HUTECT Start-up Wing competition in 2021. He also earned a Consolation Prize in the university’s AI Hackathon in 2020 and was recognized for his undergraduate research contributions. Nhan consistently demonstrated academic excellence, earning the Outstanding Undergraduate Student Scholarship in 2018. These honors reflect his dedication to research, creativity in problem-solving, and strong commitment to applying AI technologies to real-world challenges. His consistent recognition throughout his academic career underscores his potential as a leading researcher in his field.

Research Skill🔬

Nhan T. Nguyen possesses a robust set of research skills that span artificial intelligence, computer vision, and industrial automation. He is highly proficient in data processing, exploratory data analysis, and model development using Python and advanced machine learning frameworks. His expertise includes designing and implementing deep learning models, particularly using Generative Adversarial Networks (GANs), transformers, and diffusion models for image super-resolution, denoising, and defect detection. Nhan is skilled in integrating AI models with hardware systems such as robotic arms, 3D scanners, lasers, and industrial cameras to build intelligent inspection systems. He has hands-on experience with non-destructive testing methods, particularly scanning acoustic microscopy, and is adept at handling real-world industrial datasets. Additionally, Nhan is capable of deploying AI solutions into operational environments, enhancing automation processes in sectors like semiconductor manufacturing, smart cities, and healthcare. His ability to bridge theoretical models with practical applications showcases his strong technical and problem-solving capabilities as a researcher.

Conclusion💡

Nhan T. Nguyen demonstrates exceptional promise and proven capability in applied AI and biomedical inspection research, with practical impact, strong publications, and academic service. For a master’s-level researcher, this profile is outstanding.

Publications Top Noted✍️

📄 1. GAN-Based Super-Resolution in Linear R-SAM Imaging for Enhanced Non-Destructive Semiconductor Measurement

  • Authors: Thi Thu Ha Vu, Tan Hung Vo, Trong Nhan Nguyen, Jaeyeop Choi, Le Hai Tran, Vu Hoang Minh Doan, Van Bang Nguyen, Wonjo Lee, Sudip Mondal, Junghwan Oh

  • Year: 2025

  • Citation (DOI): 10.3390/app15126780

  • Source: Applied Sciences, Published on June 17, 2025

📄 2. Transformer-Based Super-Resolution Scanning Acoustic Imaging for Industrial Inspection

  • Authors: Trong Nhan Nguyen, Vu Hoang Minh Doan, Tan Hung Vo, Jaeyeop Choi, Junghwan Oh

  • Year: 2025

  • Citation (DOI): 10.1109/icit63637.2025.10965207

  • Source: 2025 IEEE International Conference on Industrial Technology (ICIT), Published on March 26, 2025

📄 3. Optimizing Scanning Acoustic Tomography Image Segmentation With Segment Anything Model for Semiconductor Devices

  • Authors: Thi Thu Ha Vu, Tan Hung Vo, Trong Nhan Nguyen, Jaeyeop Choi, Sudip Mondal, Junghwan Oh

  • Year: 2024

  • Citation (DOI): 10.1109/TSM.2024.3444850

  • Source: IEEE Transactions on Semiconductor Manufacturing, Published in November 2024

Afeez Soladoye | Machine learning | Young Scientist Award

Mr. AfeezSoladoye | Machine learning | Young Scientist Award

Lecturer at Federal university Oye-Ekiti, Nigeria

Soladoye Afeez Adekunle is a promising young scholar in Computer Engineering, currently pursuing his Ph.D. at the Federal University Oye-Ekiti. With a Master’s degree earned with distinction, he has demonstrated strong academic and research capabilities. His work spans machine learning, artificial intelligence, and applied computing, including the development of medical prediction systems and fake news detection using deep learning. In addition to his teaching responsibilities at undergraduate and postgraduate levels, he actively contributes as a peer reviewer for reputable journals such as BMJ Open and serves as a technical editor. His involvement in academic committees and university-level projects reflects his leadership and dedication to institutional development. While his practical projects are impactful, the inclusion of more peer-reviewed publications and measurable research outcomes would further enhance his profile. Overall, his commitment to innovation, education, and research makes him a suitable and competitive candidate for the Young Scientist Award.

Professional Profile

Education🎓

Soladoye Afeez Adekunle has a solid educational background in Computer Engineering, reflecting his dedication to academic excellence and continuous professional development. He is currently pursuing a Ph.D. in Computer Engineering at the Federal University Oye-Ekiti, Nigeria, with a research focus on advanced computing and intelligent systems. He previously earned a Master of Engineering (M.Eng) in Computer Engineering from the same university, graduating with distinction in 2023. His undergraduate studies were completed at Ladoke Akintola University of Technology, Ogbomosho, where he obtained a Bachelor of Technology (B.Tech) degree in Computer Engineering in 2016. His foundational education includes a Senior School Leaving Certificate from Foundation Model College, Ikirun, in 2009, and a Primary School Leaving Certificate from Al-hilal Nursery and Primary School, Ikirun, in 2003. His academic journey reflects a consistent commitment to learning, skill acquisition, and growth in the field of computer science and engineering, preparing him for a successful career in research and education.

Professional Experience📝

Soladoye Afeez Adekunle has amassed valuable professional experience across academia, research, and industry. He currently serves as a Lecturer II in the Department of Computer Engineering at the Federal University Oye-Ekiti, where he teaches both undergraduate and postgraduate courses, supervises student projects, and mentors young researchers. In addition to his teaching role, he is the Assistant Examination Officer and Level Advisor, playing a vital role in exam coordination and academic advising. He also contributes as a Technical Editor for the FUOYE Journal of Engineering and Technology and reviews scholarly articles for esteemed journals like BMJ Open and the Nigerian Journal of Technological Development. As a freelance Machine Learning Engineer, he has developed predictive systems for medical diagnosis and fake news detection, showcasing his ability to apply research in practical contexts. His previous roles include network engineering trainee and peer tutor, reflecting a versatile and well-rounded professional path in computer science and engineering.

Research Interest🔎

Soladoye Afeez Adekunle has earned recognition for his dedication to academic excellence, professional service, and contributions to the field of computer engineering. He graduated with distinction in his Master’s degree in Computer Engineering from the Federal University Oye-Ekiti, a testament to his academic strength and commitment to excellence. He has also been entrusted with key roles within the university, such as Assistant Examination Officer, Level Advisor, and member of several strategic committees, including the Artificial Intelligence Committee and departmental accreditation teams. These roles highlight the trust placed in him by his peers and institutional leadership. Additionally, his active involvement as a reviewer for respected international and national journals such as BMJ Open and the Nigerian Journal of Technological Development reflects recognition of his scholarly competence and critical thinking. Although formal awards are not explicitly listed, his growing responsibilities, editorial roles, and consistent academic performance collectively reflect a strong professional honor and recognition within his academic community.

Award and Honor🏆

Soladoye Afeez Adekunle has earned recognition for his dedication to academic excellence, professional service, and contributions to the field of computer engineering. He graduated with distinction in his Master’s degree in Computer Engineering from the Federal University Oye-Ekiti, a testament to his academic strength and commitment to excellence. He has also been entrusted with key roles within the university, such as Assistant Examination Officer, Level Advisor, and member of several strategic committees, including the Artificial Intelligence Committee and departmental accreditation teams. These roles highlight the trust placed in him by his peers and institutional leadership. Additionally, his active involvement as a reviewer for respected international and national journals such as BMJ Open and the Nigerian Journal of Technological Development reflects recognition of his scholarly competence and critical thinking. Although formal awards are not explicitly listed, his growing responsibilities, editorial roles, and consistent academic performance collectively reflect a strong professional honor and recognition within his academic community.

Research Skill🔬

Soladoye Afeez Adekunle possesses a diverse and practical set of research skills that align with cutting-edge developments in computer engineering and artificial intelligence. His expertise includes data analysis, machine learning model development, deep learning, and natural language processing. He has applied these skills in various impactful projects such as medical prediction systems for cancer and stroke, fake news detection, and object measurement using computer vision techniques. Adept at data preprocessing, model training, performance evaluation, and algorithm optimization, he ensures high-quality and accurate research outcomes. He is also skilled in using tools and frameworks such as Python, TensorFlow, Keras, and MATLAB for simulation and modeling. His experience in peer reviewing academic journals and formatting manuscripts further demonstrates his understanding of scientific writing and research ethics. Soladoye’s ability to merge academic research with practical application, along with his commitment to innovation, positions him as a capable and forward-thinking researcher in the technology domain.

Conclusion💡

Soladoye, Afeez Adekunle presents a strong case for the Young Scientist Award, especially in the areas of emerging technologies, machine learning, and applied computing. His academic excellence, teaching versatility, peer-review contributions, and practical ML project development demonstrate his passion and potential.

Publications Top Noted✍️

  • Title: IMPACT OF SOCIAL MEDIA ON POLICE BRUTALITY AWARENESS IN NIGERIA

    • Authors: OJOA, SOLADOYE Afeez A.

    • Year: 2020

    • Citations: 24

  • Title: Detection of Cervical Cancer Using Deep Transfer Learning

    • Authors: B.A. Omodunbi, A.A. Soladoye, A.O. Esan, N.S. Okomba, T.G.O.O.M. Ojelabi

    • Year: 2024

    • Citations: 4*

  • Title: Optimizing Stroke Prediction Using Gated Recurrent Unit and Feature Selection in Sub-Saharan Africa

    • Authors: A.A. Soladoye, D.B. Olawade, I.A. Adeyanju, O.M. Akpa, N. Aderinto, et al.

    • Year: 2025

    • Citations: 2

  • Title: E-learning: Significance on Federal Unity Schools Students’ in Nigeria Amidst COVID-19 Lockdown

    • Authors: A.A. Soladoye

    • Year: 2020

    • Citations: 2

  • Title: Development of a Medical Condition Prediction Model Using Natural Language Processing with K-Nearest Neighbour

    • Authors: B.A. Omodunbi, A.A. Soladoye, N.S. Okomba, M.O. Ayinla, C.S. Odeyemi

    • Year: [Year not specified]

    • Citations: 2*

  • Title: Smart Hospitality: Leveraging Technological Advances to Enhance Customer Satisfaction

    • Authors: O.O. Osadare, O.N. Akande, A.A. Soladoye, P.O. Sobowale

    • Year: 2024

    • Citations: 1

  • Title: Internet of Things (IoT) Based Remote Surveillance Camera for Supervision of Examinations

    • Authors: C. Segun Odeyemi, B.A. Omodunbi, O.M. Olaniyan, A.A. Soladoye

    • Year: 2024

    • Citations: 1

  • Title: Prediction of Customer Satisfaction in Airline Hospitality Services for Improved Service Delivery Using Support Vector Machine

    • Authors: A.A. Sobowale, O.O. Osadare, A.A. Soladoye, P.O. Sobowale

    • Year: 2024

    • Citations: 1

  • Title: Development of an Interactive Android-Based Ayo-Olopon Game

    • Authors: E.Y. Bolaji Abigail Omodunbi, Afeez Adekunle Soladoye, Opeyemi Asaolu

    • Year: 2023

    • Citations: 1