Jia Jinlong | Engineering | Research Excellence Award

Assoc. Prof. Dr. Jia Jinlong | Engineering | Research Excellence Award

Head of the Mining Department | Wuhan Institute of Technology | China

Dr. Jinlong Jia is a researcher at the Lanzhou Institute of Technology, China, specializing in coal engineering, gas extraction technologies, and energy-related geomechanics with a focus on improving safety, efficiency, and sustainability in coal mining operations. With 24 scientific publications, 434 citations, and an h-index of 12, he has established a strong research profile in the fields of coal pore structure evolution, borehole optimization, and fluid–rock interactions under complex geological conditions. His recent work includes developing numerical simulation models to quantitatively evaluate effect factors in multi-branch pinnate borehole gas extraction in high-gas thick coal seams, and investigating the influence of CO₂–H₂O interaction time on coal pore morphology and water migration, published in Energy and already earning citations for its contributions to clean energy and mine safety. Dr. Jia’s research integrates computational modeling, experimental coal chemistry, and engineering applications to address critical challenges in methane extraction, gas-solid coupling mechanisms, and geological hazard prevention. Over his career, he has collaborated with more than 67 co-authors, demonstrating extensive engagement in multidisciplinary and multi-institutional research teams working across geology, mining engineering, and energy science. His findings contribute to national and global efforts toward safer mining environments, enhanced gas utilization, reduced greenhouse gas emissions, and improved resource recovery efficiency. Through advancing both theoretical understanding and practical solutions in coalbed methane extraction and pore-scale mechanisms, Dr. Jia continues to play a significant role in supporting sustainable energy development and improving engineering practices within the mining and geoscience sectors.

Profile: Scopus 

Featured Publications

Zhu, X., Jia, J., Zhang, L., Ma, Z., Qin, Z., Zhang, H., & Liu, Z. (2025). Study on the numerical simulation model for quantitative evaluation on effect factors of multi‑branch pinnate borehole gas extraction in high‑gas thick coal seams. Himalayan Geology, 46(2), 125–135.

Xu, H., Hu, J., Liu, H., Ding, H., Zhang, K., Jia, J., Fang, H., & Gou, B. (2024). Effect of the interaction time of CO₂–H₂O on the alterations of coal pore morphologies and water migration during wetting. Energy, 294, Article 130944. https://doi.org/10.1016/j.energy.2024.130944

Babu B | Manufacturing | Editorial Board Member

Mr. Babu B | Manufacturing | Editorial Board Member

  Amrita College of Engineering and Technology | India  

Professor Babu Bhaskaran of Indra Ganesan College of Engineering is a distinguished academic whose multidisciplinary research spans IoT applications, artificial intelligence, renewable energy, sustainable materials, green manufacturing, and advanced engineering systems. His extensive contributions include notable chapters such as IoT-Driven Innovations in Fruits and Vegetables Quality Monitoring, Emerging Trends in Research and Technology, The Future of Multidisciplinary Research in Global Development, A Review of Mechanical and Durability Properties of Fiber-Reinforced Concrete, Underground Water Pumping Model for Agricultural Farming, Honeybees in Agricultural Engineering, Green Manufacturing Technologies and Sustainable Product Design, Advancements in Sustainable Materials, and Climate-Smart Agriculture. His work consistently emphasizes innovation, sustainability, and practical applications, addressing global challenges related to agriculture, energy efficiency, environmental protection, and engineering optimization. Through his academic output, he focuses on developing smart IoT-based monitoring systems, promoting renewable energy adoption in agriculture, improving the performance of eco-friendly materials, and supporting climate-resilient farming practices. His publications reflect a strong commitment to advancing engineering research while ensuring societal benefit. With a growing portfolio of impactful work, Professor Bhaskaran continues to contribute significantly to interdisciplinary research, shaping the future of sustainable engineering and strengthening global efforts toward environmental resilience and technological advancement.

Profiles: ResearchGate 

Featured Publications

1. IOT-Driven Innovations in Fruits and Vegetables Quality Monitoring: From Sensors to Edge AI Bhaskaran, B., Vanisri, K., Sumathra, S., & Ramanarayanan, N. (2025, November). IOT-driven innovations in fruits and vegetables quality monitoring: From sensors to edge AI. In [Edited Volume Title Not Provided] (Chapter).

2. Emerging Trends in Research and Technology: Modern Materials and Manufacturing (Chapter 11) Bhaskaran, B., Vanisri, K., & Sumathra, S. (2025, September). Modern materials and manufacturing. In Emerging trends in research and technology (Chapter 11).

3. The Future of Multidisciplinary Research in Global Development: The Role of Renewable Energy in Agricultural Engineering Bhaskaran, B. (2025, September). The role of renewable energy in agricultural engineering: Opportunities and challenges. In The future of multidisciplinary research in global development (Chapter).

4. A Review of Mechanical and Durability Properties of Fiber-Reinforced Concrete (Chapter 6) Bhaskaran, B., Vanisri, K., Mukesh, M., & Ramanarayanan, N. (2025, September). A review of mechanical and durability properties of fiber-reinforced concrete. In [Book Title Not Provided] (Chapter 6).

 

Nikolai Kargin | Semiconductor Materials | Best Researcher Award

Prof. Dr. Nikolai Kargin | Semiconductor Materials | Best Researcher Award

Rector Office Counselor, Professor | National Research Nuclear University MEPhI | Russia

Nikolai I. Kargin is a distinguished researcher with extensive expertise in electronic processes in microwave devices, quantum-well heterostructures, and high-heterostructure device development. His scientific contributions encompass the physics and technology of quantum-well heterostructures, micro- and nanotechnology for short-channel microwave devices, and the design, calculation, and simulation of heterostructure unipolar and bipolar microwave devices operating at frequencies up to 250 GHz and beyond. Kargin has played a pivotal role in advancing heterostructure monolithic microwave integrated circuits (MMICs) and devices for broadband wireless communication systems, fiber-optic networks, airborne radars, and high-sensitivity radiometers, as well as energy-efficient devices based on wide-gap materials. With over 230 publications—including a monograph, 230 articles and abstracts, 15 scientific and methodological works, and nine patents—Kargin’s research has had significant impact across academia and industry. His work is characterized by interdisciplinary collaboration, bringing together teams in electronics, spintronics, photonics, and nanotechnology, and fostering innovations that address both fundamental scientific challenges and applied technological needs. He has contributed to numerous high-impact projects that enhance communication technologies, radar systems, and energy-efficient electronic devices, reflecting a strong societal and technological influence. Throughout his career, Kargin has held leadership roles such as Vice-Rector of the National Research Nuclear University MEPhI, Director of the Institute of Nanotechnologies in Electronics, Spintronics and Photonics, and head of advanced research departments, emphasizing his ability to guide research initiatives and mentor scientific teams. His work exemplifies excellence in integrating theoretical insights with practical device engineering, establishing him as a globally recognized authority in microwave electronics and heterostructure technologies.

Profile: Scopus 

Featured Publications

  1. Kargin, N. I., et al. (2025). Evidence of isospin-symmetry violation in high-energy collisions of atomic nuclei. Nature Communications.

  2. Kargin, N. I., et al. (2025). Iridescence and luminescence from opal matrices for show business. Photonics.

  3. Kargin, N. I., et al. (2025). Raman spectroscopy of multilayer graphene structures with various twist angles between layers. Journal of Applied Spectroscopy.

  4. Kargin, N. I., et al. (2025). Development of a correlator for measuring the second-order autocorrelation function of single photon sources. Russian Microelectronics.

  5. Kargin, N. I., et al. (2025). Single NV centers in diamond produced by multipulse femtosecond laser irradiation. Diamond and Related Materials.


Kargin’s research bridges fundamental physics and advanced device engineering, driving innovation in quantum technologies, high-frequency electronics, and nanomaterials. His work contributes to scientific knowledge, industrial applications in communication and sensing systems, and global advancements in photonics and nuclear research.

Cyrille Richard | Materials Science | Best Scholar Award

Dr. Cyrille Richard | Materials Science | Best Scholar Award

Research Director | CNRS | France

Dr. Cyrille Richard, 53, is a distinguished Directeur de recherche at the Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), Faculté de Pharmacie, Paris. He earned his Doctorate in Organic Chemistry from Université Paris XI-Orsay in 2000, following a DEA in 1996, both with highest honors, and obtained his Habilitation à diriger des recherches from Université Paris Descartes in 2015. Dr. Richard’s professional trajectory includes postdoctoral research at Pittsburgh, USA, and Aventis Pharma, as well as CNRS appointments from Chargé de recherches 2ᵉ classe to Directeur de recherche 2ᵉ classe since 2018. His work focuses on organic chemistry, nanoparticle synthesis, surface functionalization, and the development of chemical probes for in vivo imaging, therapy, and in vitro diagnostics, with expertise in optical imaging, nanoparticle biodistribution, and ELISA-based diagnostics. Over 2018–2025, he led major projects, including national ANR grants (PLEaSe, Stric-on) and international collaborations (FET Open, CSC), supervising 4 PhD students, 3 postdocs, and 15 master’s students, attracting international talent from China, India, Brazil, Ecuador, Egypt, and Canada. He has filed a patent (WO 2024/061937 A1) and published 35 high-impact articles (7 with IF >10), 2 book chapters, amassing 8,840 citations with an H-index of 42. His research is highly collaborative, with national, industrial, and international partnerships, and he actively contributes to scientific governance, serving on 11 doctoral juries, 6 master juries, and numerous project and manuscript review committees for journals such as Nature Nanotechnology, ACS Nano, and Angewandte Chemie. He has been invited to present at eight international conferences and participates in strategic initiatives, including the CNRS laboratory council and the Institut de Chimie Biologique steering committee. Dr. Richard’s contributions have been recognized through awards such as a “Best Paper Prize” and an individual CNRS prime (2024–2027), reflecting his leadership in chemical biology, nanomedicine, and translational research that bridges innovation, diagnostics, and therapeutic applications.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate | LinkedIn

Featured Publications

  • Maldiney, T., Bessière, A., Seguin, J., Teston, E., Sharma, S. K., Viana, B., Bos, A. J. J., … (2014). The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nature Materials, 13(4), 418–426. Cited by 1104

  • Richard, C., Balavoine, F., Schultz, P., Ebbesen, T. W., & Mioskowski, C. (2003). Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science, 300(5620), 775–778. Cited by 1000

  • Balavoine, F., Schultz, P., Richard, C., Mallouh, V., Ebbesen, T. W., … (1999). Helical crystallization of proteins on carbon nanotubes: A first step towards the development of new biosensors. Angewandte Chemie International Edition, 38(13-14), 1912–1915. Cited by 697

  • Maldiney, T., Lecointre, A., Viana, B., Bessière, A., Bessodes, M., Gourier, D., … (2011). Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. Journal of the American Chemical Society, 133(30), 11810–11815. Cited by 433

  • Bessière, A., Sharma, S. K., Basavaraju, N., Priolkar, K. R., Binet, L., Viana, B., … (2014). Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate. Chemistry of Materials, 26(3), 1365–1373. Cited by 412

Andrzej Augustynowicz | Engineering | Best Researcher Award

Mr. Andrzej Augustynowicz | Engineering | Best Researcher Award

Professor at Opole University of Technology, Poland

Dr. Andrzej Augustynowicz is a highly accomplished University Professor at the Opole University of Technology, specializing in automotive engineering and vehicle mechatronics. His academic and professional career is marked by a strong focus on energy systems in vehicles, hybrid propulsion, driver behavior modeling, and advanced vehicle diagnostics. He has contributed extensively to both theoretical research and practical applications through experimental studies, computational simulations, and diagnostic analyses that address challenges in energy efficiency, traffic safety, and sustainable mobility. His research is published in internationally indexed journals and presented at reputed conferences, strengthening the global understanding of modern automotive systems. Alongside his research, he is an active mentor, doctoral supervisor, and reviewer of scientific works, playing a key role in developing the next generation of researchers. His contributions extend beyond academia through his involvement in professional societies and initiatives in electromobility and continuing engineering education.

Professional Profile 

Scopus Profile | ORCID Profile 

Education

Dr. Andrzej Augustynowicz has pursued a distinguished academic path culminating in a habilitation degree in engineering, positioning him as a recognized authority in the field of automotive research. His educational background combines a rigorous foundation in mechanical and automotive engineering with advanced specialization in mechatronics of vehicles and machines. Over the course of his academic development, he has gained deep expertise in energy systems, mathematical modeling, vehicle dynamics, and hybrid technologies. His education has enabled him to bridge theoretical and applied perspectives, equipping him to conduct impactful experimental research and computational studies that contribute to both academia and industry. Through his advanced qualifications, he is not only able to lead complex research projects but also to mentor doctoral candidates, design innovative curricula, and serve as a reviewer of scientific dissertations. His education reflects both depth and breadth, supporting a career dedicated to advancing sustainable and intelligent mobility solutions.

Experience

Professor Augustynowicz holds an esteemed academic position at the Department of Vehicle and Machine Mechatronics, where he combines research, teaching, and academic leadership. His experience includes supervising doctoral and postgraduate theses in the fields of energy systems, vehicle diagnostics, and hybrid drive technologies. He has contributed to numerous collaborative research initiatives and co-authored impactful studies with national and international partners, underscoring his active engagement in global academic networks. Beyond supervision, he has served as a reviewer of doctoral dissertations and scientific works in automotive engineering and internal combustion systems, thereby ensuring the quality and rigor of scholarly contributions in his domain. His experience also spans leadership in continuing education programs, where he develops and promotes courses in electromobility and sustainable transportation technologies. With a career blending research, teaching, and academic service, he has established himself as a versatile expert committed to innovation, mentorship, and advancing the engineering profession.

Research Interest

Dr. Augustynowicz’s research interests cover a wide spectrum of topics within automotive and mechanical engineering, with a particular emphasis on sustainable energy systems and driver–vehicle interactions. His studies focus on automotive engines as energy systems, hybrid drive mechanisms, and mathematical modeling of driver behavior in regulating vehicle systems. He has conducted both experimental investigations—such as bench and road analysis of spark-ignition engines—and computational simulations to optimize vehicle performance and safety. His work also extends to traffic safety, accident reconstruction, and diagnostic systems for vehicles, all of which contribute to reducing environmental impacts and improving reliability. A strong interdisciplinary focus characterizes his approach, integrating mechanical design, human factors, energy efficiency, and advanced diagnostics. His interest in emerging areas such as electromobility and intelligent energy assistance systems highlights his vision for future-oriented automotive engineering. Collectively, his research interests reflect a dedication to innovation, sustainability, and road safety in transportation systems.

Award and Honor

Throughout his career, Dr. Augustynowicz has received recognition for his academic and research contributions in automotive engineering. His publications in high-impact journals indexed in Scopus, MDPI, and other international platforms stand as a testament to the quality and originality of his research. He has collaborated with leading researchers in Europe and contributed to cross-border projects, earning respect in the international research community. His role as a doctoral supervisor and reviewer of theses has also been acknowledged as a valuable service to higher education and scientific advancement. Membership in esteemed professional societies such as the Polish Scientific Society of Combustion Engines reflects the recognition of his expertise by peers in the field. His involvement in continuing education initiatives in electromobility has further demonstrated his commitment to knowledge dissemination. These achievements underline his professional stature and reinforce his position as a deserving candidate for academic and research awards.

Research Skills

Dr. Andrzej Augustynowicz possesses a diverse set of advanced research skills that have shaped his academic and professional success. He is proficient in experimental techniques for analyzing automotive energy systems, including road and laboratory testing of powertrains, hybrid systems, and diagnostic applications. His computational expertise allows him to conduct mathematical modeling of driver behavior and vehicle dynamics, as well as simulations for energy management and speed control. These capabilities enable him to link theory with practical application, offering comprehensive solutions to complex engineering challenges. He is skilled in project leadership, having contributed to collaborative research initiatives and interdisciplinary investigations. In addition, he has strong academic supervision skills, guiding doctoral and postgraduate students through advanced research topics. His ability to critically review scholarly works, contribute to curriculum development, and support continuing education reflects his versatility. These combined skills highlight him as a research leader with significant impact on academia and industry alike.

Publication Top Notes

Title: Evaluation of the Quality of Welded Joints After Repair of Automotive Frame Rails
Authors: Andrzej Augustynowicz, Mariusz Prażmowski, Wiktoria Wilczyńska, Mariusz Graba
Year: 2025
Journal: Materials

Title: Analysis of Passenger Car Powertrain System Measurements in Road Conditions
Authors: Andrzej Bieniek, Mariusz Graba, Jarosław Mamala, Andrzej Augustynowicz, Michał Szczepanek
Year: 2023
Journal: Combustion Engines

Title: Assessment of Energy Demand for PHEVs in Year-Round Operating Conditions
Authors: Mariusz Graba, Jarosław Mamala, Andrzej Bieniek, Andrzej Augustynowicz, Krystian Czernek, Andżelika Krupińska, Sylwia Włodarczak, Marek Ochowiak
Year: 2023
Journal: Energies

Title: The Concept of Using an Expert System and Multi-Valued Logic Trees to Assess the Energy Consumption of an Electric Car in Selected Driving Cycles
Authors: Adam Deptuła, Andrzej Augustynowicz, Michał Stosiak, Krzysztof Towarnicki, Mykola Karpenko
Year: 2022
Journal: Energies

Title: Study of Energy Consumption of a Hybrid Vehicle in Real-World Conditions
Authors: Jarosław Mamala, Mariusz Graba, Andrzej Bieniek, Krzysztof Prażnowski, Andrzej Augustynowicz, Michal Smieja
Year: 2021
Journal: Eksploatacja i Niezawodnosc – Maintenance and Reliability

Title: Evaluation of Applicability of Dielectric Constant in Monitoring Aging Processes in Engine Oils
Authors: Leszek Gomółka, Andrzej Augustynowicz
Year: 2019
Journal: Eksploatacja i Niezawodnosc – Maintenance and Reliability

Title: Preliminary Evaluation Research of a Powertrain System with Electrically Controlled Planetary Gear
Authors: Andrzej Lechowicz, Andrzej Augustynowicz
Year: 2018
Journal: International Journal of Vehicle Design

Title: Identification of Static Unbalance Wheel of Passenger Car Carried Out on a Road
Authors: Krzysztof Prażnowski, Sebastian Brol, Andrzej Augustynowicz
Year: 2014
Journal: Solid State Phenomena (SSP)

Conclusion

In summary, Dr. Andrzej Augustynowicz’s extensive expertise in vehicle energy systems, hybrid technologies, and driver behavior modeling, combined with his strong record of research, publication, and academic mentorship, make him a highly deserving candidate for the Best Researcher Award. His scholarly contributions have advanced the fields of automotive diagnostics, hybrid drive systems, and road safety, while his leadership in education has nurtured future engineering innovators. With continued growth in international collaborations and high-impact publications, he has the potential to play an even greater role in shaping the future of sustainable mobility and research excellence.

Yukuai Liu | Materials Science | Best Researcher Award

Prof. Yukuai Liu | Materials Science | Best Researcher Award

Department-head at Zhaoqing University, China

Dr. Yukuai Liu is an accomplished researcher and Associate Professor at the Department of Electronic Information and Communication Engineering, Zhaoqing University, China. With a strong foundation in condensed matter physics and applied physics, his work focuses on the development of next-generation spintronic and dielectric devices. Over the past decade, he has established a reputation for high-impact research in magnetism, multiferroics, and materials engineering. His research outcomes have been published in leading scientific journals such as Advanced Materials, ACS Nano, and Physical Review B, reflecting global academic recognition. His professional trajectory spans multiple research fellowships and international collaborations, with a career defined by scientific rigor, innovation, and academic leadership. Dr. Liu’s active participation in journal review boards, scientific conferences, and university-level leadership demonstrates his dedication not only to research but also to the broader scientific community.

Professional Profile 

Scopus Profile | ORCID Profile

Education

Dr. Liu began his academic journey at Anhui University, where he obtained a Bachelor’s degree in Applied Physics. He then pursued a Ph.D. in Condensed Matter Physics at the University of Science and Technology of China. His doctoral research laid the foundation for his interest in magnetism, spin transport, and complex material interactions. During his Ph.D., he engaged in experimental and theoretical studies of material properties at the quantum level, which shaped his future career trajectory. His education combined rigorous academic coursework with hands-on research in advanced laboratories. This blend of theory and practice equipped him with deep insights into materials science and physical phenomena. His exposure to leading scientists and cutting-edge technology during this phase instilled in him the discipline and vision that continue to drive his research success today.

Experience

Dr. Liu’s professional experience spans prestigious institutions and diverse research roles. He worked as a Research Fellow and Engineer at the South University of Science and Technology of China, focusing on materials innovation. He then joined The Hong Kong Polytechnic University as a Postdoctoral Research Fellow, where he deepened his expertise in spintronics and multiferroics through international collaboration. Dr. Liu joined Zhaoqing University as an Assistant Professor, later becoming an Associate Professor and Department Head. Throughout his career, he has been involved in multiple funded research projects, authored over 40 high-impact publications, and mentored students and junior researchers. His interdisciplinary background, international exposure, and leadership roles underscore his capacity to bridge academic theory with real-world applications, making him a valuable contributor to both the university and the global scientific community.

Research Interest

Dr. Liu’s primary research interests lie in the fields of spintronics, magnetism, dielectric materials, and multiferroics. His recent work explores the coupling of electric and magnetic orders in advanced materials and their potential use in low-power spintronic devices. He has been particularly focused on using ferroelectric substrates like PMN-PT to manipulate magnetoelectric transport in magnetic and topological materials. Another major area of his research includes studying complex anomalous Hall effects and spin transport in magnetic heterostructures. These studies aim to uncover novel physical phenomena and pave the way for innovations in next-generation memory and logic devices. Dr. Liu also explores interfacial effects of rare-earth ions on electronic and spintronic behavior, providing deeper insights into material-device interaction. His multidisciplinary approach blends condensed matter physics, material science, and device engineering, making his research highly relevant to the future of nanoelectronics and quantum technology.

Awards and Honors

Dr. Liu has received multiple recognitions for his outstanding contributions to the field of materials physics and engineering. His consistent publication record in SCI/SCIE-indexed journals, including several Q1 journals, has earned him international credibility and scholarly respect. He has been acknowledged for his research performance by various academic bodies and invited as a speaker and committee member at several international conferences. In addition, he holds active editorial and peer-review appointments, a testament to his academic leadership and subject-matter expertise. His role as a department head and frequent academic advisor highlights his commitment to mentorship and institutional growth. While specific award names are not listed in the nomination form, his overall academic profile aligns well with recognition-worthy achievements such as “Best Researcher” or “Outstanding Scientist” awards. Dr. Liu’s career exemplifies excellence, innovation, and global academic engagement, all essential attributes for prestigious honors in the research community.

Research Skills

Dr. Liu brings a diverse and advanced research skill set that combines experimental techniques, materials fabrication, and device analysis. He is proficient in the use of ferroelectric and multiferroic materials for engineering new types of electronic and magnetic functionalities. His experience in spin transport measurement, magnetoelectric modulation, and thin-film deposition enables him to design and execute complex experiments at the nanoscale. Dr. Liu also has expertise in analyzing magnetic compensation effects, Hall effect behavior, and interfacial interactions, which are vital for understanding and optimizing device performance. His ability to integrate theory with application allows him to collaborate across disciplines, contributing to both fundamental physics and applied engineering. Furthermore, he is skilled in data analysis using modern computational tools and maintains strong scientific writing and presentation capabilities. His research skills have not only led to impactful publications but also to the successful mentoring of emerging scholars in his field.

Publications Top Notes

Title: Interfacial spin structures in Pt/Tb₃Fe₅O₁₂ bilayer films on Gd₃Ga₅O₁₂ substrates.
Authors: Roshni Yadav; Abdulhakim Bake; Wai Tung Lee; Yu‑Kuai Liu; David R. G. Mitchell; Xin‑Ren Yang; David L. Cortie; Ko‑Wei Lin; Chi Wah Leung
Year: 2023
Citations: 2

Title: Modulation of Exchange Bias in La₀.₃₅Sr₀.₆₅MnO₃/La₀.₇Sr₀.₃MnO₃ through Volatile Polarization of P(VDF‑TrFE) Gate Dielectric
Authors: Xu Wen Zhao; Hon Fai Wong; Yu Kuai Liu; Sheung Mei Ng; Min Gan; Lok Wing Wong; Jiong Zhao; Zongrong Wang; Wang Fai Cheng; Chuanwei Huang et al.
Year: 2023

Title: Interlayer antiferromagnetic coupling in Tb₃Fe₅O₁₂/Y₃Fe₅O₁₂ bilayers
Authors: Jing Ming Liang; Xu Wen Zhao; Xin Yuan; Yu Kuai Liu; Sheung Mei Ng; Hon Fai Wong; Pei Gen Li; Yan Zhou; Fu Xiang Zhang; Chee Leung Mak et al.
Year: 2023

Title: The thickness effect on the compensation temperature of rare-earth garnet thin films
Authors: Jing Ming Liang; Xu Wen Zhao; Yu Kuai Liu; Pei Gen Li; Sheung Mei Ng; Hon Fai Wong; Wang Fai Cheng; Yan Zhou; Ji Yan Dai; Chee Leung Mak et al.
Year: 2023

Title: Comparison of topotactic and magnetic structures for manganite oxide films
Authors: Yukuai Liu; Sixia Hu; Boyang Zhao; Xinrong Shi; Xiezong Zeng; Chi Wah Leung; Chuanwei Huang
Year: 2022

Title: Tuning ferromagnetic properties of LaMnO₃ films by oxygen vacancies and strain
Authors: Liu Y. K.; Wong H. F.; Lam K. K.; Mak C. L.; Leung C. W.
Year: 2019

Title: Anomalous Hall effect in Pt/Tb₃Fe₅O₁₂ heterostructure: Effect of compensation point
Authors: Liu Y. K.; Wong H. F.; Lam K. K.; Chan K. H.; Mak C. L.; Leung C. W.
Year: 2018

Title: Balanced development of piezoelectricity and Curie temperature in lead‑free piezoelectric ceramics
Authors: Xu Zhi‑Xue; Yan Jian‑Min; Guo Lei; Xu Meng; Wang Fei‑Fei; Liu Yu‑Kuai; Zheng Ren‑Kui
Year: 2018

Title: Effect of post‑annealing on laser‑ablation deposited WS₂ thin films
Authors: Wang H.; Ng S. M.; Wong H. F.; Wong W. C.; Lam K. K.; Liu Y. K.; Fei L. F.; Zhou Y. B.; Mak C. L.; Wang Y. et al.
Year: 2018

Title: Extreme magnetoresistance and SdH oscillation in compensated semimetals of NbSb₂ single crystals
Authors: Guo Lei; Liu Yu‑Kuai; Gao Guan‑Yin; Huang Ye‑Yu; Gao Heng; Chen Lei; Zhao Weiyao; Ren Wei; Li Shi‑Yan; Li Xiao‑Guang et al.
Year: 2018

Conclusion

Dr. Yukuai Liu is a highly deserving candidate for the Best Researcher Award, owing to his impactful contributions to spintronics, materials science, and device physics. His sustained research excellence, international collaborations, and publication record in top-tier journals reflect his dedication to advancing both science and technology. With demonstrated leadership potential and a global research mindset, Dr. Liu is well-positioned to lead innovative research efforts and inspire future generations of scientists in the years to come.

Ilyas Smailov | Tribology | Best Research Article Award

Mr. Ilyas Smailov | Tribology | Best Research Article Award

PhD student at Institute of Energy and Mechanical Engineering Named After A. Burkitbayev, Kazakhstan

Smailov Ilyas is an ambitious and accomplished young professional from Kazakhstan, known for his dedication to engineering, youth leadership, and social development. At just 25, he has amassed an impressive portfolio of academic accolades, leadership awards, and national recognitions. He has actively contributed to national volunteerism and youth policy, earning honors such as the “Qazaqstannyn altyn zhastary – 2020” and the prestigious “Halyk Alǵysy” state medal. His dynamic involvement in student organizations, leadership councils, and public service initiatives demonstrates a unique blend of technical knowledge and civic commitment. He is widely respected for his creativity, public speaking, and organizational skills, making him a rising figure in Kazakhstan’s engineering and youth development landscape. Through internships, workshops, and active community service, Ilyas continues to demonstrate his passion for combining innovation with impact. His long-term vision includes contributing significantly to research, technology, and nation-building through academic and industrial channels.

Professional Profile 

Education🎓

Ilyas began his academic journey at Karaganda Technical University (KarTU), where he earned a Bachelor of Engineering and Technology in Mechanical Engineering in 2020. He continued his education with a Master of Technical Sciences, graduating in 2022. His academic excellence earned him several prestigious scholarships, including those from the Shakhmardan Yessenov, Konrad Adenauer, and Nursultan Nazarbayev foundations. Currently, he is pursuing a PhD in Mechanical Engineering at Satbayev University in Almaty, a leading research institution in Kazakhstan. Alongside his formal education, Ilyas completed advanced training in machining operations and earned the qualification of a 2nd-grade lathe operator. He has consistently combined academic pursuits with extracurricular engagement, attending seminars and workshops on leadership, management, and self-education at nationally significant platforms such as the Library of the First President. His educational background lays a strong foundation for future research and industrial innovation.

Professional Experience📝

Ilyas has built a diverse and evolving professional portfolio that spans engineering, academic coordination, and policy leadership. From 2022 to 2024, he served as a methodologist at the Department of Youth Policy at KarTU, where he also headed the Center for Creative Development, guiding student programs and innovation events. Earlier, he worked as an engineer at Caspian Constructors Trust, contributing to industrial mechanical systems. Currently, he is employed as a process technician at the final assembly workshop of Astana Motors Manufacturing, where he applies his academic knowledge in real-world production environments. In addition, he has actively led student and youth organizations, including serving as chairman of the “Zhas Orda” student union and Youth Association. These roles sharpened his leadership and strategic planning capabilities. His mix of industrial, academic, and civic experience uniquely positions him as a multidisciplinary professional capable of driving innovation both in technical and societal spheres.

Research Interest🔎

Smailov Ilyas’s research interests lie primarily in the field of mechanical engineering, with a focus on advanced manufacturing technologies, machine design, and process optimization. As a current PhD student at Satbayev University, he is committed to exploring innovative engineering solutions that improve production efficiency, sustainability, and material performance. He is particularly interested in integrating practical industrial processes with academic research to solve real-world engineering challenges. His exposure to lathe operations, assembly line processes, and mechanical system diagnostics further fuels his interest in developing automated systems and enhancing precision engineering. Ilyas also shows a growing inclination toward applied mechanics, especially in the context of Kazakhstan’s industrial development. His academic background and professional roles in both educational and manufacturing institutions position him well to bridge the gap between research theory and engineering application. In future work, he aims to contribute to academic publications and collaborative industrial research in the mechanical and manufacturing domains.

Award and Honor🏆

Smailov Ilyas has earned numerous awards and honors that reflect his exceptional academic, leadership, and social contributions. Notably, he was a laureate of the Republican Youth Award “Qazaqstannyn altyn zhastary – 2020” for his excellence in higher education leadership. He received the CIS Medal of Honor as the “Best Student of the Commonwealth of Independent States – 2020,” recognizing his efforts in education, science, and sports. His volunteer work during the COVID-19 pandemic earned him the state medal “Halyk Alǵysy” by presidential decree. He has also received scholarships from the Yessenov Foundation, Konrad Adenauer Foundation, and Nursultan Nazarbayev Foundation. Ilyas’s contributions to youth policy and student development have been acknowledged by prestigious organizations, including the Presidential Office, Ministry of Information and Social Development, and regional Akims. These accolades highlight his strong commitment to leadership, community service, and the advancement of technical education.

Research Skill🔬

Smailov Ilyas possesses a well-rounded set of research skills that support his work in mechanical engineering. He demonstrates proficiency in technical drawing, mechanical system analysis, and engineering diagnostics, grounded in both academic and practical training. His hands-on experience in machinery operations, especially as a certified 2nd-grade lathe operator, complements his ability to conduct experimental research. Ilyas is skilled in data collection, process simulation, and problem-solving methodologies, vital for applied research projects. He has developed early experience in project design, technical documentation, and literature reviews, which are essential for academic writing and publication. His participation in internships and seminars has improved his critical thinking and cross-disciplinary collaboration skills. While his current English proficiency (IELTS 5.5) is developing, he continues to grow his communication abilities through international workshops and training. As a young researcher, Ilyas shows promise in advancing innovative solutions and contributing to industrial research and scientific literature.

Conclusion💡

Smailov Ilyas demonstrates strong leadership, academic excellence, and social engagement. However, for the Best Research Article Award, the critical factor is the quality, impact, and publication of a research article

Publication Top Noted✍️

  • 📘 Title: An Analysis of the Tribological and Thermal Performance of PVDF Gears in Correlation with Wear Mechanisms and Failure Modes Under Different Load Conditions

  • ✍️ Authors: Enis Muratović, Adis Muminovic, Łukasz Gierz, Ilyas Smailov, Maciej Sydor, Muamer Delić

  • 📅 Year: 2025

  • 🔢 DOI: 10.3390/coatings15070800

  • 📚 Journal: Coatings (Published by MDPI)

  • 🔎 Citation Format (APA):
    Muratović, E., Muminovic, A., Gierz, Ł., Smailov, I., Sydor, M., & Delić, M. (2025). An Analysis of the Tribological and Thermal Performance of PVDF Gears in Correlation with Wear Mechanisms and Failure Modes Under Different Load Conditions. Coatings, 15(7). https://doi.org/10.3390/coatings15070800

Moheb Abdelaziz | Materials Science | Best Researcher Award

Dr. Moheb Abdelaziz | Materials Science | Best Researcher Award

Postdoctoral Researcher at TF, Kiel University, Germany

Dr. Moheb Abdelaziz is a highly accomplished researcher in materials science, with a strong focus on nanocomposite thin films, plasmonics, and solar energy harvesting. Holding a D.Sc. from Aalto University with an Excellent grade and a Best Dissertation Award, his research has led to numerous high-impact publications in prestigious journals such as Advanced Materials and Nature Communications. He has over a decade of experience in advanced thin film fabrication techniques and materials characterization, with notable contributions to plasmonic metasurfaces and broadband absorbers. Dr. Abdelaziz has demonstrated leadership by mentoring Ph.D. and Master’s students and actively contributing to academic training and lab safety programs. His work bridges fundamental science and real-world application, particularly in sustainable energy and thermal management. While he could further strengthen his independent research profile and international visibility, his achievements and innovative contributions make him a highly suitable and deserving candidate for the Best Researcher Award.

Professional Profile 

Education🎓

Dr. Moheb Abdelaziz has a strong and interdisciplinary academic background in both materials science and electrical engineering. He earned his Doctor of Science (D.Sc.) in Materials Science from Aalto University, Finland (2016–2021), graduating with the highest distinction and receiving both the Award for Excellence and the Best Dissertation Award. His doctoral research focused on nanocomposite materials with polarizonic reflective coloration for advanced optical and energy applications. Prior to that, he completed a Master of Science (M.Sc.) in Electrical Engineering from Cairo, Egypt (2009–2012), where his thesis centered on modeling and simulation of dynamic voltage restorers in power systems. He began his academic journey with a Bachelor of Science (B.Sc.) in Electrical Engineering from Al-Azhar University, Cairo, in 2007, graduating with an Excellent grade. This diverse educational foundation has equipped Dr. Abdelaziz with a unique blend of theoretical knowledge and practical expertise, forming the basis of his multidisciplinary research in nanotechnology and energy systems.

Professional Experience📝

Dr. Moheb Abdelaziz brings over a decade of diverse professional experience in advanced research and academic settings. Since February 2022, he has been serving as a Postdoctoral Researcher at the Institute of Materials Science, Kiel University, Germany, where he focuses on developing selective solar absorber materials using magnetron co-sputtering and various thin-film fabrication techniques. From 2019 to 2021, he conducted doctoral research at Aalto University, Finland, while also working as a Visiting Researcher at Kiel University, contributing significantly to plasmonic nanomaterials and solar energy harvesting. Between 2013 and 2019, he was a Doctoral Candidate at Kiel University, where he engineered a three-source PVD sputtering system and led several lab-based training initiatives. Prior to this, from 2009 to 2013, he worked at the Nuclear Research Center, Egyptian Atomic Energy Authority, as a researcher and maintenance engineer for nuclear reactor electrical systems. His professional journey reflects a strong commitment to innovation, hands-on experimentation, and scientific leadership.

Award and Honor🏆

Dr. Moheb Abdelaziz has been recognized with several prestigious awards and honors that reflect his outstanding contributions to scientific research and innovation. Most notably, he received the Award for Excellence and the Best Dissertation Award from Aalto University, Finland, in recognition of his doctoral research on nanocomposite materials with polarizonic reflective coloration—a pioneering contribution to the field of plasmonics and energy materials. These honors underscore both the academic quality and real-world relevance of his work. In addition to academic awards, his research has been featured in top-tier scientific journals, further validating the impact and novelty of his contributions. His publications in Advanced Materials, Nature Communications, and Advanced Optical Materials highlight his role in pushing the boundaries of materials science. These achievements not only demonstrate technical excellence but also affirm his standing as a leading figure in the development of innovative materials for energy and optical applications.

Research Skill🔬

Dr. Moheb Abdelaziz possesses a comprehensive and advanced set of research skills spanning materials science, nanotechnology, and applied physics. He is highly proficient in thin-film fabrication techniques such as magnetron sputtering, thermal evaporation, and spin coating, with extensive experience in designing and optimizing deposition systems, including the construction of a three-source PVD sputtering system. His expertise extends to a broad range of materials characterization tools, including SEM, EDX, XRD, AFM, ellipsometry, UV-Vis/NIR spectroscopy, FTIR, and thermal and electrical analysis methods. Dr. Abdelaziz also excels in experimental design, data interpretation, and troubleshooting complex laboratory systems, which have been critical to the success of his solar energy and plasmonics research. Additionally, he has hands-on experience with cleanroom protocols and nanoparticle synthesis. His ability to integrate theoretical knowledge with practical implementation, mentor students, and collaborate across disciplines reflects strong leadership and innovation in research, making him a valuable asset to the scientific community.

Conclusion💡

Dr. Moheb Abdelaziz is a highly suitable candidate for the Best Researcher Award. His academic credentials, consistent high-impact publications, hands-on innovation in solar and nanomaterials, and mentorship contributions mark him as a standout researcher in the field of materials science and applied nanotechnology.

Publications Top Noted✍️

  • M. Elbahri, M. Abdelaziz, S. Homaeigohar, A. Elsharawy, …
    2018 – 49 citations
    Plasmonic Metaparticles on a Blackbody Create Vivid Reflective Colors for Naked‐Eye Environmental and Clinical Biodetection
    (Advanced Materials, 30(4), 1704442)

  • M. Elbahri, R. Abdelaziz, D. Disci-Zayed, S. Homaeigohar, J. Sosna, D. Adam, …
    2017 – 33 citations
    Underwater Leidenfrost nanochemistry for creation of size-tailored zinc peroxide cancer nanotherapeutics
    (Nature Communications, 8(1), 15319)

  • M.K. Hedayati, M. Abdelaziz, C. Etrich, S. Homaeigohar, …
    2016 – 27 citations
    Broadband anti-reflective coating based on plasmonic nanocomposite
    (Materials, 9(8), 636)

  • M. Elbahri, A.U. Zillohu, B. Gothe, M.K. Hedayati, R. Abdelaziz, …
    2015 – 26 citations
    Photoswitchable molecular dipole antennas with tailored coherent coupling in glassy composite
    (Light: Science & Applications, 4(7), e316)

  • M. Abdelaziz, S. Homaeigohar, M.K. Hedayati, M.A. Assad, M. Elbahri
    2019 – 12 citations
    Solar aluminum kitchen foils with omnidirectional vivid polarizonic colors
    (Advanced Optical Materials, 7(15), 1900737)

  • M. Abdelaziz, R. Abdelaziz, S. Homaeigohar, E.S. Zarie, M.Z. Yetik, …
    2019 – 6 citations
    Transflective mesoscopic nanoparticles synthesized in the Leidenfrost droplet as black absorbers
    (Advanced Materials Interfaces, 6(1), 1801610)

  • M. Elbahri, M.K. Hedayati, S. Homaeigohar, M. Abdelaziz
    2020 – 5 citations
    Reawakening of plasmonic nanocomposites with polarizonic reflective coloration: from metal to molecules
    (Frontiers of Nanoscience, 15, 185–214)

  • J. Drewes, N. Perdana, K. Rogall, T. Hartig, M. Elis, U. Schürmann, F. Pohl, M. Abdelaziz, …
    2024 – 3 citations
    Co‐sputtering of A Thin Film Broadband Absorber Based on Self‐Organized Plasmonic Cu Nanoparticles
    (Particle & Particle Systems Characterization, 41(2), 2300102)

  • M. Elbahri, M.K. Hedayati, M. Abdelaziz
    2016 – 1 citation
    Active organic dipolar antenna
    (International Congress on Advanced Electromagnetic Materials, 2016)

  • M.A. Assad, M. Abdelaziz, T. Hartig, T. Strunskus, A. Vahl, F. Faupel, …
    2025 – citation data pending
    Cloud Inspired White and Grey Plasmonic Metasurfaces for Camouflaged Thermal Management
    (Advanced Materials, 2501080)

Rodica-Mariana Ion | Materials Science | Best Researcher Award

Prof. Dr.Rodica-Mariana Ion | Materials Science | Best Researcher Award

Director of Doctoral School at Valahia University, Romania

Professor Rodica-Mariana Ion is a distinguished researcher with extensive contributions in nanomaterials, photochemistry, and cultural heritage conservation. With over 375 ISI-indexed publications, 58 patents, an H-index of 41, and more than 7,200 citations, she has made a significant scientific impact. She holds key academic and leadership positions, including Vice-Rector and Director of Doctoral Studies at Valahia University, and leads multiple national and international research initiatives. Her active involvement in European Commission expert groups, evaluation panels, and policy-making bodies highlights her influence on both research and innovation strategy. She has supervised over 25 PhD students and collaborates globally with institutions in Europe, South Africa, and Asia. Her interdisciplinary expertise and commitment to advancing science make her an outstanding candidate for the Best Researcher Award. Enhancing global visibility and publishing in higher-impact journals could further elevate her profile, but her current achievements already demonstrate exceptional research excellence and leadership.

Professional Profile

Education🎓

Professor Rodica-Mariana Ion possesses a rich and diverse educational background that underpins her expertise in chemistry, nanomaterials, and scientific research. She earned her Licentiate in Chemistry from the Polytechnic Institute of Bucharest (1982) and completed her Ph.D. in spectroscopy for porphyrins at the University of Bucharest (1995). Her postdoctoral and postgraduate studies span prestigious institutions and specialized fields, including solid-state physics, photochemistry, and analytical methods. She undertook advanced training in quality management (ISO 9001, ISO 17025), laboratory accreditation, project management, and university management, earning multiple certifications and diplomas. Additionally, she completed specialized training in scientific techniques for cultural heritage examination in Italy (2021). Her education is both technical and managerial, including an MBA-level diploma in organizational management. This strong academic foundation, combined with continuous professional development, has enabled her to lead interdisciplinary research and educational initiatives at national and international levels, demonstrating her lifelong commitment to learning and scientific excellence.

Professional Experience📝

Professor Rodica-Mariana Ion has over four decades of extensive professional experience spanning academia, scientific research, and policy advisory roles. She is a Full Professor at Valahia University of Targoviste, where she also serves as Vice-Rector and Director of Doctoral Studies. She leads the “Nanomaterials for Mechanical Microsystems” Research Center and heads the “Evaluation and Conservation of Cultural Heritage” group at ICECHIM. Her expertise has been recognized through her appointments to national and European bodies, including the European Commission’s SCHEER and DG-CNECT groups, and Romania’s Advisory Board for Research and Innovation. She has supervised over 25 PhD candidates, coordinated EU-funded projects, and served as an expert evaluator for major research programs such as FP7, Horizon, and COST. Her professional career demonstrates a consistent focus on advancing nanotechnology, cultural heritage conservation, and scientific innovation. Her leadership, research coordination, and policy influence position her as a highly impactful figure in the European scientific community.

Research Interest🔎

Professor Rodica-Mariana Ion’s research interests are deeply rooted in interdisciplinary scientific domains, with a strong focus on nanomaterials, photochemistry, analytical chemistry, and the conservation of cultural heritage. Her work explores the synthesis, characterization, and application of nanomaterials in areas such as environmental protection, biomedical fields, and historical artifact preservation. She is particularly interested in advanced spectral techniques and surface analysis methods for material identification and degradation studies. Her expertise extends to imaging and diagnostic tools used in archaeology and architectural restoration. Additionally, she is actively involved in the development of sustainable technologies and risk assessment related to material use in cultural and environmental contexts. Her research also encompasses innovation in digital technologies, including 3D modeling and data science, applied to heritage science. Professor Ion’s diverse interests bridge scientific rigor and cultural relevance, making significant contributions to both cutting-edge material science and the preservation of historical and artistic assets.

Award and Honor🏆

Professor Rodica-Mariana Ion has received numerous awards and honors in recognition of her outstanding contributions to science, research, and academic leadership. She has been appointed as a member of prestigious national and international bodies, including the European Commission’s SCHEER and DG-CNECT, and serves on Romania’s Advisory Board for Research, Development, and Innovation. Her leadership and scientific excellence have earned her memberships in elite academic organizations such as the Academy of Romanian Scientists and L’Agence Universitaire de la Francophonie. She has served as a project evaluator for major European funding programs including FP7, Horizon, INTAS, and national research competitions across Europe. Her role as an official representative of Romania in various COST EU programs highlights her international recognition. Additionally, her numerous patents, publications, and mentorship of doctoral students further underline her reputation and impact. These honors reflect her commitment to scientific advancement, innovation, and academic excellence on both national and global levels.

Research Skill🔬

Professor Rodica-Mariana Ion possesses an exceptional range of research skills developed through decades of interdisciplinary scientific work. She is highly proficient in the synthesis and characterization of nanomaterials, employing advanced analytical techniques such as spectroscopy, photochemistry, and surface analysis. Her expertise includes working with complex instrumentation for material testing and degradation assessment, particularly in the context of cultural heritage preservation. She has strong capabilities in data interpretation, laboratory management, and quality assurance, being certified in ISO 9001 and ISO 17025 standards. Her skills also extend to imaging methods used in archaeological and architectural studies. Additionally, she is adept in research project management, from proposal writing to coordination and evaluation, with significant experience in both national and European funding frameworks. Her ability to integrate scientific innovation with real-world applications demonstrates a rare blend of technical knowledge, strategic thinking, and collaborative leadership, making her a highly accomplished and versatile scientific researcher.

Conclusion💡

Professor Rodica-Mariana Ion is an exceptional candidate for a Best Researcher Award, particularly in the fields of nanomaterials, analytical chemistry, and cultural heritage science. Her prolific publication record, deep international involvement, long-standing academic leadership, and demonstrable innovation (via patents and applied work) make her a standout researcher with a global footprint.

Publications Top Noted✍

  1. Title: Tremolite-Asbestos Presence in Roman Archaeological Site of Micia, Romania
    Authors: Not specified
    Year: 2025
    Citations: 0

  2. Title: Compositional and Microstructural Investigations of Prehistoric Ceramics from Southern Romania (Middle Neolithic Pottery)
    Authors: Not specified
    Year: 2024
    Citations: 0

  3. Title: Structural and Morphological Investigations of Mosaics from Banloc Castle (Romania)
    Authors: Not specified
    Year: Not specified
    Citations: 0

  4. Title: The Effect of Thermoplastic Elastomer and Fly Ash on the Properties of Polypropylene Composites with Long Glass Fibers
    Authors: Not specified
    Year: 2024
    Citations: 5

  5. Title: Network for Forest By-Products Charcoal, Resin, Tar, Potash (COST Action EU-PoTaRCh)
    Authors: Not specified
    Year: Not specified
    Citations: 1

  6. Title: Immobilization of Natural Betalain Pigments in Inorganic Hosts
    Authors: Not specified
    Year: 2024
    Citations: 0

  7. Title: Opinion of the Scientific Committee on Health, Environmental and Emerging Risks on the Safety of Titanium Dioxide in Toys
    Authors: Not specified
    Year: Not specified (duplicated twice)
    Citations: 0

  8. Title: New Triple Metallic Carbonated Hydroxyapatite for Stone Surface Preservation
    Authors: Not specified
    Year: 2023
    Citations: 2

  9. Title: Inhibition of Survival Mechanisms and Cell Death Induction in Melanoma Following Photodynamic Therapy Mediated by Meso-5,10,15,20-tetrakis-(4-hydroxyphenyl)-porphyrin
    Authors: Not specified
    Year: 2023
    Citations: Not specified

 

Jian Xu | Materials Science | Young Scientist Award

Dr. Jian Xu | Materials Science | Young Scientist Award

Associate Professor at Chengdu Aeronautic Polytechnic University, China

Jian Xu is a highly promising candidate for the Young Scientist Award, demonstrating strong academic achievements and innovative research in composite materials, heat transfer, and deformation. Currently pursuing a doctoral degree at a prestigious 985 university, he has published multiple high-impact papers in top-tier SCI journals, reflecting significant contributions to the field. Jian Xu holds an impressive portfolio of 11 authorized patents, highlighting the practical application and innovation of his work. His active participation in nationally funded research projects further showcases his research’s relevance and recognition. Additionally, his excellent English skills and engagement in academic conferences demonstrate strong communication abilities. While increasing international collaborations and leadership roles would further enhance his profile, Jian Xu’s consistent academic excellence, impactful research output, and dedication to advancing material science make him a deserving candidate for this award. His work exemplifies the innovation and scholarly promise that the Young Scientist Award seeks to honor.

Professional Profile 

Education🎓

Jian Xu has built a solid educational foundation through progressive studies at reputable Chinese universities. He completed his bachelor’s degree at Hunan University of Technology, a key university known for its strong engineering programs, where he gained fundamental knowledge in materials science and engineering. He then pursued a master’s degree at Southwest Petroleum University, a Double-First Class university, further deepening his expertise in the field. Currently, Jian Xu is working towards his doctoral degree at Hunan University, a prestigious 985 institution recognized for its research excellence and advanced academic environment. His education journey reflects a clear focus on strength and deformation of composite materials, heat transfer characteristics, and related engineering disciplines. This progression through increasingly competitive and research-intensive institutions has equipped him with a robust theoretical and practical skill set, preparing him well for high-level scientific research and innovation. His academic path demonstrates commitment to excellence and continuous professional growth.

Professional Experience📝

Jian Xu has accumulated valuable professional experience through active involvement in several high-profile research projects funded by national and provincial programs in China. His participation in projects such as the National Natural Science Foundation of China’s study on gear transmission damage mechanisms, the National Key Research and Development Program focusing on ultra-high-speed centrifuge technology, and defense-related lightweight design initiatives reflects his strong technical expertise and ability to contribute to cutting-edge engineering challenges. Additionally, Jian Xu has engaged in experimental studies on dynamic damage and impact resistance of composite materials, highlighting his hands-on research skills. His work spans interdisciplinary fields, including materials science, mechanical engineering, and thermal analysis, demonstrating versatility. Jian Xu has also contributed to scientific communities by presenting at national conferences, showcasing his commitment to sharing knowledge and advancing his field. This combination of project experience, technical innovation, and academic engagement establishes him as a capable and productive young researcher with a clear impact on both scientific and applied engineering domains.

Research Interest🔎

Jian Xu’s research interests focus primarily on the strength, deformation, and heat transfer characteristics of advanced composite materials, particularly ultra-high strength steels (UHSS). He is deeply engaged in studying the complex interactions between thermal, mechanical, and metallurgical processes that influence material behavior under various conditions. His work involves analyzing residual stresses, deformation patterns, and nonlinear mechanical responses in materials subjected to coupled thermo-mechanical-metallurgical effects. Jian Xu also explores innovative methods for improving material performance, including advanced thermoforming techniques and the development of novel molds and production systems. Additionally, his interests extend to measurement technologies and error reduction in thermal environments, contributing to more precise engineering applications. This multidisciplinary approach bridges materials science, mechanical engineering, and thermal analysis, aiming to enhance the reliability and efficiency of composite materials in industrial applications. His ongoing goal is to expand understanding of material heat transfer and deformation to drive innovations in engineering design and manufacturing processes.

Award and Honor🏆

Jian Xu has received multiple recognitions for his academic excellence and research achievements throughout his academic career. He has been awarded the prestigious Academic First Class Scholarship consecutively from 2019 to 2022, highlighting his consistent high performance and dedication to his studies. In addition to these scholarships, Jian Xu earned the Third Prize in the highly competitive “Jereh Cup” Chinese Graduates’ Petroleum Equipment Innovation Design Competition in 2018, demonstrating his innovative capabilities and practical engineering skills early in his career. His membership in the Chinese Society of Theoretical and Applied Mechanics further reflects his recognition and active involvement in the professional scientific community. These honors not only underscore his scholarly merit but also his potential to contribute significantly to the field of materials science and engineering. Overall, Jian Xu’s awards and memberships illustrate a strong foundation of academic achievement combined with promising research innovation.

Research Skill🔬

Jian Xu possesses strong research skills demonstrated by his comprehensive expertise in the experimental and theoretical analysis of composite materials, particularly ultra-high strength steels. He is proficient in advanced thermo-mechanical-metallurgical coupling methods to study material behavior under complex conditions such as heat transfer, deformation, and impact. His ability to conduct detailed residual stress analysis, nonlinear mechanical response modeling, and thermal behavior simulations highlights his solid command of both computational and laboratory techniques. Jian Xu also excels in using finite element methods and hydrostatic leveling system measurements, showcasing precision in experimental setups and error reduction strategies. Furthermore, his portfolio of eleven authorized patents reflects creativity and practical problem-solving skills in engineering applications. His involvement in multiple national research projects indicates strong project management and collaboration capabilities. Overall, Jian Xu’s research skills are well-rounded, blending rigorous scientific inquiry with innovation, making him highly capable of advancing knowledge and technology in material science and engineering fields.

Conclusion💡

Jian Xu is highly suitable for the Young Scientist Award. His robust academic achievements, cutting-edge research in composite materials and heat transfer, multiple high-impact publications, and strong patent portfolio demonstrate both scientific excellence and innovation potential typical of a promising young researcher. His involvement in nationally funded projects further supports the significance of his work.

While Jian Xu could enhance his international collaboration footprint and leadership experience, these are natural growth areas for an early-career researcher. Overall, his profile strongly aligns with the qualities recognized by Young Scientist Awards: excellence in research, innovation, and academic dedication.

Publications Top Noted✍️

  • Thermal behavior analysis of UHSS rectangular plates via gradient thermoforming process under coupled heat conduction and radiation
    Authors: J. Xu, Z. J. Li, H. L. Dai*
    Year: 2024
    Journal: Thermal Science and Engineering Progress (SCI, Q1, IF=5.1)
    Citation: Not specified

  • Investigation on residual stress and deformation patterns of UHSS rectangular plate considering phase transition and coupled heat transfer
    Authors: Xu J, Dai HL*, Li ZJ, Huang ZW, Xie PH, He ZH
    Year: 2025 (anticipated)
    Journal: Thermal Science and Engineering Progress (SCI, Q1, IF=5.1)
    Citation: Not specified

  • Nonlinear mechanical response of UHSS rectangular plate under thermo-mechanical-metallurgical coupling
    Authors: Xu J, Lei MK, Dai HL*, Li ZJ, Zhang TX, Gao WR
    Year: 2024
    Journal: Mechanics of Advanced Materials and Structures (SCI, Q1, IF=3.6)
    Citation: Not specified

  • Measurement error in hydrostatic leveling system due to temperature effect and their reduction method
    Authors: Xu J, Tong ZF, Xu YZ, Dai HL*
    Year: 2024
    Journal: Review of Scientific Instruments (SCI, Q3, IF=1.6)
    Citation: Not specified

  • Thermo-metallurgical-mechanical modeling of FG titanium-matrix composites in powder bed fusion
    Authors: Z.J Li, H.L Dai*, J. Xu, Z.W H
    Year: 2023
    Journal: International Journal of Mechanical Sciences (SCI, Q1, IF=7.3)
    Citation: Not specified

  • A semi-analytical approach for analysis of thermal behaviors coupling heat loss in powder bed fusion
    Authors: Z.J Li, H.L Dai*, J. Xu, Z.W H
    Year: 2023
    Journal: International Journal of Heat and Mass Transfer (SCI, Q1, IF=5.2)
    Citation: Not specified

  • Stress analysis of internally cracked pipeline based on finite element method
    Authors: Huang Y*, Xu J, Li YX
    Year: 2019
    Journal: Weapon Materials Science and Engineering (CSCD, IF=1.1)
    Citation: Not specified

  • Finite element analysis of the effect of ellipsoid-containing corrosion-shaped defects on stresses in internally pressurized pipelines
    Authors: Huang Y*, Li YX, Xu J
    Year: 2019
    Journal: Material Protection (CSCD, IF=1.3)
    Citation: Not specified

  • Stress analysis of elliptic casing containing volumetric defects under effect of internal pressure
    Authors: Huang Y*, Song SH, Xu J, Li YX
    Year: 2020
    Journal: Weapon Materials Science and Engineering (CSCD, IF=1.1)
    Citation: Not specified