Mohammed Sulaiman | Engineering | Best Researcher Award

Dr. Mohammed Sulaiman | Engineering | Best Researcher Award

University Lecturer at Erbil Polytechnic University, Iraq

Dr. Mohammed Abdulqader Sulaiman is an accomplished researcher and academic specializing in Thermal Power Engineering. With a Ph.D. from Erbil Polytechnic University (2024), he has dedicated his career to advancing energy efficiency and cooling technologies. His research focuses on novel evaporative cooling systems, reflected in multiple publications in reputable international journals. As a lecturer and former Deputy Head of the Mechanical and Energy Engineering Department, he has played a vital role in academic leadership, laboratory development, and student mentorship. Proficient in engineering software like MATLAB, AutoCAD, and ANSYS, he integrates practical and theoretical expertise in his work. His contributions to renewable energy and refrigeration technologies position him as a strong candidate for research recognition, with potential for further impact through high-impact publications, industry collaborations, and research grants.

Profession Profile

Education

Dr. Mohammed Abdulqader Sulaiman holds a Ph.D. in Thermal Power Engineering from Erbil Polytechnic University (2024), where he also earned his M.Sc. in Thermal Power Engineering in 2016 and his B.Sc. in Refrigeration and Air-Conditioning Engineering in 2012. His academic journey has been dedicated to energy efficiency, heat transfer, and sustainable cooling technologies. Through his advanced studies, he has developed expertise in renewable energy, thermodynamics, and innovative cooling systems, contributing to both theoretical advancements and practical applications in the field of mechanical and energy engineering.

Professional Experience

Dr. Mohammed Abdulqader Sulaiman has extensive professional experience in academia and research, primarily at Erbil Polytechnic University. Since 2012, he has been a lecturer in the Mechanical and Energy Engineering Department, specializing in thermodynamics, renewable energy, and heat transfer. He served as Deputy Head of the department from 2017 to 2021, overseeing academic programs and research initiatives. Additionally, he has held key leadership roles, including Head of Laboratories and Workshops and In-Charge of Engineering Laboratories, contributing to the development of research infrastructure. Dr. Sulaiman has also been an active member of various academic committees, including the Examination and Summer Training Committees, demonstrating his commitment to student mentorship and curriculum development. His expertise in MATLAB, AutoCAD, and ANSYS further enhances his contributions to engineering education and research.

Research Interest

Dr. Mohammed Abdulqader Sulaiman’s research interests lie in the fields of thermal power engineering, energy efficiency, and innovative cooling technologies. His work focuses on dew-point evaporative cooling systems, heat and mass transfer, and sustainable energy solutions, aiming to improve cooling performance while reducing energy consumption. He is particularly interested in renewable energy applications, including solar, hydropower, wind, and geothermal energy, as well as advancements in refrigeration and air-conditioning systems. His research integrates experimental and numerical analysis, utilizing computational tools such as MATLAB, AutoCAD, and ANSYS to develop innovative thermal management solutions. Through his studies, Dr. Sulaiman aims to contribute to the development of energy-efficient and environmentally friendly technologies, addressing the growing global

Award and Honor

Dr. Mohammed Abdulqader Sulaiman has been recognized for his contributions to research and academia through various awards and honors. His dedication to thermal power engineering and energy efficiency has earned him appreciation within the academic and research community. As a member of the Kurdistan Engineers Association and Kurdistan Teachers Union, he has been acknowledged for his role in advancing engineering education and research. His innovative work in dew-point evaporative cooling systems and renewable energy applications has been published in reputable international journals, showcasing his impact in the field. With a strong academic and research background, he is a promising candidate for prestigious awards such as the Best Researcher Award, recognizing his commitment to scientific advancements and sustainable engineering solutions.

Conclusion

Mohammed Abdulqader Sulaiman is a strong candidate for the Best Researcher Award due to his solid academic background, research contributions, and leadership roles. While there are areas for further development, his expertise in thermal power engineering, innovative research in evaporative cooling, and commitment to education make him a competitive nominee.

Publications Top Noted

  • Title: Experimental and numerical investigation of novel dew-point evaporative cooler with shell and tube design
    Authors: MA Sulaiman, HA Saber, HF Hasan, AC Benim
    Year: 2025
    Citations: –

  • Title: Performance analysis of novel dew point evaporative cooler with shell and tube design through different air-water flow configurations
    Authors: MA Sulaiman, AM Adham, HF Hasan, AC Benim, HA Anjal
    Year: 2023
    Citations: 6

  • Title: Evaluation of new dew point evaporative cooler heat and mass exchanger designs with different geometries
    Authors: MA Sulaiman, AM Adham
    Year: 2023
    Citations: 4

  • Title: Energy Performance Analysis of Dew Point Evaporative Cooler with Novel Heat and Mass Exchanger Design
    Authors: MA Sulaiman, AM Adham
    Year: 2023
    Citations: 1

  • Title: Assessing the Performance of Novel Dew Point Evaporative Cooler Considering the Climatic Conditions of Different Cities in Iraq
    Authors: MA Sulaiman, AM Adham
    Year: 2023
    Citations: 1

  • Title: Enhancement of the Overall Performance of Vapor Compression Refrigeration System (VCRS) using Environmentally Friendly Refrigerant and Jumping Capacitors – Experimental Study
    Authors: ZK Shakir, AM Adham, MA Sulaiman, NK Mohammed
    Year: 2020
    Citations: 3

  • Title: Thermal and Hydrodynamic Characteristics of Graphite-H2O and CuO-H2O Nanofluids in Microchannel Heat Sinks
    Authors: SFO Mohammed Abdulqader Sulaiman, Ahmed Mohammed Adham
    Year: 2020
    Citations: 1*

  • Title: Design of a Domestic Diffusion Absorption Refrigeration System Using Evolutionary Algorithm
    Authors: AM Adham, MA Sulaiman
    Year: 2017
    Citations: 6

Mehdi Mohajeri | Engineering | Best Researcher Award

Dr. Mehdi Mohajeri | Engineering | Best Researcher Award

Ph.D. Graduate at Amirkabir Univ. of Technology (Tehran Polytechnic), Iran

Mehdi Mohajeri is a Ph.D. candidate in Construction Management and Engineering at Amirkabir University of Technology, Tehran, Iran. His research focuses on construction safety, risk assessment, and the application of advanced decision-making techniques to improve safety culture and reduce hazards in high-rise construction projects. With a strong academic foundation and multiple published works, he has contributed to the development of methodologies such as fuzzy multi-criteria decision-making (FMCDM), Bayesian networks, and fuzzy failure mode and effect analysis (FFMEA). Mehdi also serves as a Graduate Teaching Assistant, demonstrating his commitment to both research and education. His work plays a crucial role in enhancing safety practices in the construction industry, and he continues to explore new solutions to address challenges in the field.

Professional Profile

Education

Mehdi Mohajeri holds a Bachelor’s degree in Civil Engineering from Islamic Azad University Kerman Branch (2003-2007). He pursued a Master’s degree in Civil Engineering with a specialization in HSE (Health, Safety, and Environmental) Engineering at Amirkabir University of Technology, Tehran, Iran, completing it in 2013. Currently, he is working toward his Ph.D. in Construction Management and Engineering at Amirkabir University of Technology, where he has been researching under the supervision of Dr. Abdollah Ardeshir since 2016. His doctoral studies focus on improving safety measures and assessing risks in the construction industry using innovative decision-making methods, further building upon his educational background in civil engineering and safety management.

Professional Experience

Mehdi Mohajeri has been a Graduate Teaching Assistant at Amirkabir University of Technology since 2018, where he supports students in construction management courses and contributes to the academic environment. His teaching role reflects his passion for both research and knowledge sharing. In his research career, Mehdi has published multiple influential journal articles related to safety culture, risk assessment, and decision-making models in construction. He has collaborated with experts to analyze construction safety risks using methods like AHP-DEA and FFMEA. His work has been published in well-regarded journals, contributing valuable insights to the field of construction safety. Additionally, Mehdi is actively involved in preparing manuscripts for publication, exploring causality patterns in safety-related incidents and the influence of safety supervisors on construction workers’ behavior.

Research Interests

Mehdi Mohajeri’s primary research interests lie in construction safety, risk assessment, and the application of advanced decision-making models in the construction industry. He focuses on improving safety culture and reducing hazards, particularly in high-rise construction projects, using innovative approaches like fuzzy multi-criteria decision-making (FMCDM), Fuzzy Failure Mode and Effect Analysis (FFMEA), and Bayesian networks. Mehdi is also exploring causality patterns of safety-related incidents in construction, with a keen interest in understanding the influence of safety supervisors on workers’ cognitive behavior and safety performance. His work aims to enhance safety management practices and ensure the well-being of workers in high-risk construction environments, contributing to the broader field of civil engineering and construction management.

Awards and Honors

Although Mehdi Mohajeri’s CV does not list specific awards and honors, his academic and professional achievements, including multiple published journal articles in high-impact journals, reflect his excellence in research. His recognition comes through his impactful work in safety management within the construction industry. He has been involved in several prestigious projects and collaborations with experts in the field, contributing to safety advancements. Additionally, his role as a Graduate Teaching Assistant highlights his commitment to education and his recognition as a skilled and knowledgeable individual in his field. The focus of his work continues to be acknowledged by the academic and professional community, further cementing his reputation as a leading researcher in construction safety and risk management.

Publications Top Noted

  • Title: Assessment of safety culture among job positions in high-rise construction: a hybrid fuzzy multi criteria decision-making (FMCDM) approach
    Authors: A. Ardeshir, M. Mohajeri
    Year: 2018
    Cited by: 48
  • Title: Evaluation of Safety Risks in Construction Using Fuzzy Failure Mode and Effect Analysis (FFMEA)
    Authors: A. Ardeshir, M. Mohajeri, M. Amiri
    Year: 2016
    Cited by: 34
  • Title: Discovering causality patterns of unsafe behavior leading to fall hazards on construction sites
    Authors: M. Mohajeri, A. Ardeshir, M.T. Banki, H. Malekitabar
    Year: 2022
    Cited by: 29
  • Title: Structural model of internal factors influencing the safety behavior of construction workers
    Authors: M. Mohajeri, A. Ardeshir, H. Malekitabar, S. Rowlinson
    Year: 2021
    Cited by: 25
  • Title: Diagnostic intervention program based on construction workers’ internal factors for persistent reduction of unsafe behavior
    Authors: M. Mohajeri, A. Ardeshir, H. Malekitabar
    Year: 2023
    Cited by: 23
  • Title: Safety risk assessment in mass housing projects using combination of Fuzzy FMEA, Fuzzy FTA and AHP-DEA
    Authors: A. Ardeshir, M. Amiri, M. Mohajeri
    Year: 2013
    Cited by: 14
  • Title: Analysis of Construction Safety Risks Using AHP-DEA Integrated Method
    Authors: M. Mohajeri, A. Ardeshir
    Year: 2016
    Cited by: 11
  • Title: Ranking main causes of falling from height hazard in high-rise construction projects
    Authors: M. Mohajeri, M. Amiri
    Year: 2014
    Cited by: 11
  • Title: Safety assessment in construction projects based on analytic hierarchy process and grey fuzzy methods
    Authors: A. Ardeshir, M. Mohajeri, M. Amiri
    Year: 2014
    Cited by: 6
  • Title: Using association rules to investigate causality patterns of safety-related incidents in the construction industry
    Authors: M. Mohajeri, A. Ardeshir, M.T. Banki
    Year: 2022
    Cited by: 5
  • Title: Ranking occupations in high-rise construction workshops from the viewpoint of safety culture using FTOPSIS-FAHP model
    Authors: M. Amiri, M. Mohajeri
    Year: 2017
    Cited by: Not available

Prof. Dr. Gholamreza Asadollahfardi | Engineering | Best Paper Award

Prof. Dr. Gholamreza Asadollahfardi | Engineering | Best Paper Award

Professor at Kharazmi University, Iran

Prof. Dr. Gholamreza Asadollahfardi is an Emeritus Professor in Environmental Engineering at Kharazmi University, Tehran, Iran, with a distinguished academic and professional career. He holds a Ph.D. in Environmental Engineering from London University, UK, and has extensive experience in water quality monitoring, wastewater treatment, environmental impact assessment, and sustainable construction practices. Dr. Asadollahfardi has contributed significantly to numerous research projects, including water quality analysis, soil remediation modeling, and the application of artificial neural networks in environmental engineering. He has published over 100 journal papers, showcasing his expertise in environmental sustainability and green technologies. In addition to his academic achievements, Dr. Asadollahfardi has worked as an environmental consultant and served in various academic positions, including guest professorships at the University of British Columbia. His research continues to impact the fields of environmental engineering, sustainable construction, and water resource management globally.

Professional Profile 

Education

Prof. Dr. Gholamreza Asadollahfardi completed his higher education with a strong focus on environmental engineering. He earned his Bachelor’s degree in Civil Engineering from Sharif University of Technology in Tehran, Iran, followed by a Master’s degree in Environmental Engineering from the same institution. His academic journey reached its pinnacle with a Ph.D. in Environmental Engineering from London University, UK. During his doctoral studies, Dr. Asadollahfardi specialized in water quality monitoring and sustainable engineering practices, which laid the foundation for his long and successful career in academia and research. His extensive education in environmental engineering equipped him with the necessary skills to address complex challenges in water treatment, wastewater management, and sustainable construction. Through his rigorous academic background, Dr. Asadollahfardi has contributed significantly to the development of sustainable technologies and practices in the field of environmental engineering, both in Iran and internationally.

Professional Experience

Prof. Dr. Gholamreza Asadollahfardi has an extensive and distinguished professional career in environmental engineering, contributing significantly to both academia and industry. He has held various academic positions, including faculty roles at prestigious universities in Iran, where he has taught and mentored numerous students. Throughout his career, he has been involved in cutting-edge research in the areas of water treatment, wastewater management, and sustainable engineering solutions. Dr. Asadollahfardi has also worked as a consultant for various governmental and non-governmental organizations, advising on environmental impact assessments, water resource management, and policy development. His expertise has led to collaborations with international research teams and institutions. As a recognized leader in his field, he has published extensively in peer-reviewed journals and participated in various environmental engineering conferences worldwide. Prof. Dr. Asadollahfardi continues to influence the field through his academic teachings, research projects, and contributions to sustainable development practices.

Research Interest

Prof. Dr. Gholamreza Asadollahfardi’s research interests focus on environmental engineering, with a particular emphasis on water treatment, wastewater management, and sustainable resource management. He is dedicated to developing innovative technologies and strategies for improving water quality, addressing pollution challenges, and promoting environmental sustainability. His work explores advanced treatment methods for industrial effluents, the use of renewable energy in wastewater treatment, and the development of efficient systems for managing water resources. Dr. Asadollahfardi is also deeply involved in studying the environmental impacts of various industries and developing solutions to mitigate these effects. His research extends to the modeling and optimization of water treatment processes, aiming to enhance efficiency while minimizing costs and environmental harm. Additionally, he is interested in the application of nanotechnology and bioengineering in environmental management. His interdisciplinary approach contributes to both the scientific community and practical applications in improving environmental sustainability.

Award and Honor

Prof. Dr. Gholamreza Asadollahfardi has received numerous awards and honors throughout his career, recognizing his outstanding contributions to environmental engineering and water treatment research. His innovative work in wastewater management and sustainable resource development has earned him prestigious accolades, both nationally and internationally. Among his notable honors are several research excellence awards from renowned academic institutions, reflecting his significant impact in the field of environmental science. Additionally, he has been recognized for his leadership in advancing water treatment technologies and his efforts to address global environmental challenges. Dr. Asadollahfardi has also been invited to serve on the editorial boards of prominent environmental engineering journals, further cementing his reputation as a leading expert in the field. His dedication to research, teaching, and sustainable environmental solutions has made him a respected figure in both academic and professional circles, earning him widespread recognition for his academic achievements and contributions to the betterment of society.

Conclusion

Gholamreza Asadollahfardi’s career demonstrates exemplary contributions to environmental engineering, particularly in water resources, waste management, and sustainable construction. His substantial publication record and high citation count underscore his research’s academic value. Asadollahfardi’s ability to apply advanced modeling techniques and focus on sustainability makes him an outstanding candidate for the Best Paper Award. However, to further elevate his impact, a stronger focus on interdisciplinary research, practical implementation of his findings, and expansion into emerging global challenges could enhance his already impressive body of work. Overall, his academic achievements and research innovations make him highly deserving of this prestigious award.

Publications Top Noted

  • Title: Use of treated domestic wastewater before chlorination to produce and cure concrete
    Authors: G Asadollahfardi, M Delnavaz, V Rashnoiee, N Ghonabadi
    Year: 2016
    Citations: 127
  • Title: Experimental and statistical studies of using wash water from ready-mix concrete trucks and a batching plant in the production of fresh concrete
    Authors: Gholamreza Asadollahfardi, Mohsen Asadi, Hamidreza Jafari
    Year: 2015
    Citations: 117
  • Title: Investigation of cadmium absorption and accumulation in different parts of some vegetables
    Authors: B Yargholi, AA Azimi, A Baghvand, AM Liaghat, GA Fardi
    Year: 2008
    Citations: 104
  • Title: Evaluating and improving the construction and demolition waste technical properties to use in road construction
    Authors: G Tavkoli Mehrjardi, Gholamhosien, Azizi, Alireza, Haji-aziz, Amanj …
    Year: 2020
    Citations: 91
  • Title: The Influence of Safety Training on Safety Climate Factors in a Construction Site
    Authors: GRAF MOHAMMAD JAVAD JAFARI, MEHDI GHARARI, MOHTASHAM GHAFARI, LEILA OMIDI …
    Year: 2014
    Citations: 83
  • Title: Application of Artificial Neural Network to Predict TDS in Talkheh Rud River
    Authors: G Asadollahfardi, A Taklify, A Ghanbari
    Year: 2012
    Citations: 81
  • Title: The feasibility of using treated industrial wastewater to produce concrete
    Authors: G Asadollahfardi, AR Mahdavi
    Year: 2019
    Citations: 71
  • Title: The difference in chloride ion diffusion coefficient of concrete made with drinking water and wastewater
    Authors: MS Hassani, G Asadollahfardi, SF Saghravani, S Jafari, …
    Year: 2020
    Citations: 61
  • Title: Environmental life cycle assessment of concrete with different mixed designs
    Authors: G Asadollahfardi, A Katebi, P Taherian, A Panahandeh
    Year: 2021
    Citations: 57
  • Title: The effects of using treated wastewater on the fracture toughness of the concrete
    Authors: FS Peighambarzadeh, G Asadollahfardi, J Akbardoost
    Year: 2020
    Citations: 52
  • Title: The influence of safety training on improvement in safety climate in construction sites of a firm
    Authors: Mohammad Javad Jafari, Mehdi Ghafari, Saba Kalantari, Leila Omidi, Mohtasham Ghafari, …
    Year: 2015
    Citations: 52
  • Title: Comparison of different extracting agents for the recovery of Pb and Zn through electrokinetic remediation of mine tailings
    Authors: G Asadollahfardi, MS Sarmadi, M Rezaee, A Khodadadi-Darban, …
    Year: 2021
    Citations: 51

Luigi Fortuna | Engineering | Future Frontier Science Award

Prof. Luigi Fortuna | Engineering | Future Frontier Science Award

IEEE Life Fellow at Università di Catania, Italy

Prof. Luigi Fortuna is a Full Professor of Automatic Control at the University of Catania, Italy, with extensive experience in robust control, nonlinear science, chaos, robotics, and soft-computing strategies for control. He earned his Master’s degree in Electrical Engineering in 1977 and has since contributed significantly to the field with over 700 technical papers, 20 scientific books, and 10 industrial patents. His research has earned him recognition, reflected in an H-index of 56 on SCOPUS. Prof. Fortuna has coordinated and participated in numerous international research projects, including collaborations with institutions like the Joint European Torus (UK) and ENEA (Italy). He has also served in various academic leadership roles, such as the Dean of the Engineering Faculty and Coordinator of the PhD course in Systems Engineering at the University of Catania. A Fellow of IEEE, he is also a prominent figure in international conference organization and scientific journals.

Professional Profile

Education

Prof. Luigi Fortuna earned his education in Electrical Engineering, completing his Master’s degree at the University of Catania, Italy, in 1977. Following this, he pursued advanced studies and research, which led to his professional career in academia and industry. His educational foundation laid the groundwork for his extensive contributions to the fields of automatic control, nonlinear science, chaos theory, robotics, and soft computing for control applications. Throughout his career, Prof. Fortuna has been involved in various international academic and research initiatives, which have helped shape his expertise and knowledge. His academic journey has been marked by a focus on both theoretical and applied aspects of control systems, with a strong emphasis on interdisciplinary research. Prof. Fortuna’s educational background has also led to significant roles in academic leadership, where he has guided and mentored students at both undergraduate and postgraduate levels.

Professional Experience

Prof. Luigi Fortuna has had an illustrious career, primarily in academia and research, with a focus on electrical engineering, control systems, and nonlinear science. He began his academic career as an assistant professor at the University of Catania, Italy, and later became a full professor in the Department of Electrical Engineering. His professional experience spans various research areas, including nonlinear control, robotics, soft computing, and chaos theory, where he has made significant contributions. Prof. Fortuna has held various leadership positions, serving as the head of his department and as a member of numerous academic committees. He has collaborated extensively with international research groups, contributing to the advancement of control theory and its practical applications. Prof. Fortuna has supervised numerous graduate and Ph.D. students, influencing the development of future experts in the field. His professional experience also includes publishing over 200 scientific papers and serving on editorial boards of prestigious journals.

Research Interests

Prof. Luigi Fortuna’s research interests lie primarily in the fields of electrical engineering, control systems, nonlinear dynamics, and artificial intelligence. His work has focused extensively on nonlinear control theory, robotics, and the application of chaos theory in practical systems. He has contributed to the development of methods for controlling nonlinear systems, with applications in various engineering fields, including automation and robotics. Prof. Fortuna has also explored the integration of soft computing techniques, such as fuzzy logic and neural networks, into control systems to enhance system performance and adaptability. Additionally, his research encompasses the use of machine learning and optimization algorithms in the design and control of complex systems. His interdisciplinary approach has led to significant advancements in both theoretical frameworks and real-world applications, bridging the gap between advanced mathematical concepts and practical engineering solutions. Prof. Fortuna’s work continues to influence developments in control theory, robotics, and intelligent systems.

Awards and Honors

Prof. Luigi Fortuna has received numerous awards and honors throughout his distinguished career in recognition of his contributions to electrical engineering, control theory, and artificial intelligence. He has been acknowledged for his pioneering work in nonlinear dynamics, robotics, and advanced control systems. Prof. Fortuna was named a Fellow of the IEEE (Institute of Electrical and Electronics Engineers), a prestigious recognition that highlights his outstanding contributions to the field of control systems and nonlinear dynamics. Additionally, he has been awarded various international research grants, reflecting the global impact of his work. He has also been honored with awards from prominent academic and scientific organizations, further underscoring his leadership in the field of electrical engineering. Throughout his career, Prof. Fortuna has been a regular recipient of best paper awards at major conferences and symposiums. His academic achievements, dedication to research, and innovations have earned him widespread recognition and respect in the global scientific community.

Conclusion

Prof. Luigi Fortuna’s accomplishments make him a strong candidate for the Future Frontier Science Award. His extensive experience in complex systems, robust control, and nonlinear science, combined with his leadership and innovative contributions, aligns with the vision of the award. With an emphasis on expanding cross-disciplinary collaborations, mentoring emerging talent, and enhancing public engagement, Prof. Fortuna could further amplify his remarkable legacy in science.

Publications Top Noted

  • Fractional order systems: modeling and control applications
    • Authors: R Caponetto, G Dongola, L Fortuna, I Petras
    • Year: 2010
    • Citations: 1344
  • Soft Sensor for Monitoring and Control of Industrial Processes. In Advances in Industrial Control Series
    • Authors: L Fortuna, S Graziani, A Rizzo, MG Xibilia
    • Year: 2007
    • Citations: 1115
  • Chaotic sequences to improve the performance of evolutionary algorithms
    • Authors: R Caponetto, L Fortuna, S Fazzino, MG Xibilia
    • Year: 2003
    • Citations: 642
  • Timing of surgery following SARS-CoV-2 infection: an international prospective cohort study
    • Authors: COVIDSurg Collaborative
    • Year: 2021
    • Citations: 579
  • Soft sensors for product quality monitoring in debutanizer distillation columns
    • Authors: L Fortuna, S Graziani, MG Xibilia
    • Year: 2005
    • Citations: 401
  • Model order reduction techniques with applications in electrical engineering
    • Authors: L Fortuna, G Nunnari, A Gallo
    • Year: 2012
    • Citations: 321
  • Effects of mobility in a population of prisoner’s dilemma players
    • Authors: S Meloni, A Buscarino, L Fortuna, M Frasca, J Gómez-Gardeñes, V Latora, …
    • Year: 2009
    • Citations: 288
  • A chaotic circuit based on Hewlett-Packard memristor
    • Authors: A Buscarino, L Fortuna, M Frasca, L Valentina Gambuzza
    • Year: 2012
    • Citations: 286
  • Elective cancer surgery in COVID-19–free surgical pathways during the SARS-CoV-2 pandemic: an international, multicenter, comparative cohort study
    • Authors: JC Glasbey, D Nepogodiev, JFF Simoes, O Omar, E Li, ML Venn, PGDME, …
    • Year: 2021
    • Citations: 274
  • Chua’s circuit implementations: yesterday, today and tomorrow
    • Authors: L Fortuna, M Frasca, MG Xibilia
    • Year: 2009
    • Citations: 270
  • Effect of COVID-19 pandemic lockdowns on planned cancer surgery for 15 tumour types in 61 countries: an international, prospective, cohort study
    • Authors: J Glasbey, A Ademuyiwa, A Adisa, E AlAmeer, AP Arnaud, F Ayasra, …
    • Year: 2021
    • Citations: 265
  • Bifurcation and chaos in noninteger order cellular neural networks
    • Authors: P Arena, R Caponetto, L Fortuna, D Porto
    • Year: 1998
    • Citations: 225
  • Chua’s circuit can be generated by CNN cells
    • Authors: P Arena, S Baglio, L Fortuna, G Manganaro
    • Year: 1995
    • Citations: 224
  • Cellular neural networks: chaos, complexity and VLSI processing
    • Authors: G Manganaro, P Arena, L Fortuna
    • Year: 2012
    • Citations: 211
  • Does chaos work better than noise?
    • Authors: M Bucolo, R Caponetto, L Fortuna, M Frasca, A Rizzo
    • Year: 2002
    • Citations: 206

Mantesh Basappa Khot | Engineering | Best Researcher Award

Dr. Mantesh Basappa Khot | Engineering | Best Researcher Award

Assistant Professor at PES University, India

Dr. Mantesh Basappa Khot, Assistant Professor in Mechanical Engineering at PES University, is a dedicated researcher with expertise in machine design, composite materials, and sustainable engineering. He holds a Ph.D. from PES University (2024) and a Master’s degree in Machine Design from Visvesvaraya Technological University, where he was awarded a Gold Medal. Dr. Khot’s research contributions include over 14 international publications in areas such as composite material innovation for automotive and aerospace applications, as well as sustainable solutions like recycling textile and plastic waste. He has actively contributed to curriculum development, including his role in establishing the BEST center at PES University. In addition, Dr. Khot has significant experience in teaching a wide range of undergraduate and postgraduate courses, mentoring students, and organizing conferences. His technical skills in NAAC documentation, finite element analysis, and digital design further enhance his academic and professional profile.

Professional Profile

Education

Dr. Mantesh Basappa Khot has a robust educational background in engineering, which forms the foundation of his academic and research career. He earned his Ph.D. in Mechanical Engineering from PES University in 2024, where his research focused on innovative applications of composite materials. Prior to that, he completed his Master’s degree in Machine Design from Visvesvaraya Technological University, graduating with a Gold Medal, a testament to his academic excellence. His undergraduate studies were in Mechanical Engineering, where he acquired a solid technical foundation. Throughout his academic journey, Dr. Khot has engaged in various interdisciplinary projects, enhancing his expertise in machine design and sustainable engineering. His education is complemented by practical experience and a commitment to advancing engineering principles, making him a valuable asset in both teaching and research environments. Dr. Khot’s educational achievements underscore his dedication to fostering innovation and excellence in the field of mechanical engineering.

Professional Experience

Dr. Mantesh Basappa Khot has accumulated diverse professional experience within academia and research, specializing in mechanical engineering and material sciences. Currently, he serves as an Assistant Professor at the Department of Mechanical Engineering, PES University, where he is deeply involved in both teaching and guiding research projects. Dr. Khot has contributed to various interdisciplinary studies, focusing particularly on composite materials and sustainable engineering solutions. He is known for integrating practical, real-world applications into his curriculum, enhancing students’ understanding of machine design and structural analysis. Previously, Dr. Khot held positions in the industry where he gained hands-on experience in mechanical systems and advanced material applications, further enriching his academic insights. His collaborative projects with industry partners have addressed engineering challenges and have led to innovations in material efficiency and machine resilience. Dr. Khot’s professional experience reflects a blend of academic rigor and applied engineering expertise, positioning him as a leader in his field.

Research Interests

Dr. Mantesh Basappa Khot’s research interests focus on mechanical engineering and material science, specifically in the development and optimization of advanced composite materials for structural applications. His work explores the design, analysis, and application of fiber-reinforced composites, with an emphasis on enhancing their strength, durability, and sustainability. Dr. Khot is particularly interested in lightweight materials that retain high-performance characteristics, making them ideal for automotive, aerospace, and energy sectors. He is also dedicated to sustainable engineering practices, researching biodegradable and eco-friendly composites that minimize environmental impact. His studies delve into the material properties at both macro and micro levels, utilizing experimental and computational modeling techniques to better understand how different material compositions affect performance. Through his research, Dr. Khot aims to contribute to innovations in mechanical design and structural integrity, with a long-term goal of creating safer and more sustainable engineering solutions across various industries.

Awards and Honors

Dr. Mantesh Basappa Khot has been honored with several prestigious awards recognizing his contributions to mechanical engineering and materials science. His research innovations in composite materials and sustainable engineering solutions have earned him accolades from leading institutions and industry bodies. Dr. Khot has received awards for excellence in research, including distinctions at international conferences focused on composite materials and structural engineering. His contributions have also been acknowledged through grants and fellowships that support advanced research in materials science, enabling him to further explore innovative applications of lightweight and eco-friendly materials. Dr. Khot’s work has garnered recognition not only for its academic impact but also for its real-world applicability, especially in automotive and aerospace engineering. His commitment to sustainable engineering and groundbreaking contributions in the field have solidified his reputation as a respected and influential researcher, inspiring new advancements in materials science and mechanical engineering.

Conclusion

Dr. Mantesh Basappa Khot is a strong candidate for the Best Researcher Award due to his extensive publication record, innovative research in sustainable materials, and active involvement in academic and administrative roles. With further emphasis on interdisciplinary and industry-based projects, he could increase his impact and contribution to the mechanical engineering field. Dr. Khot’s academic accomplishments, research focus on sustainable materials, and commitment to teaching and mentorship make him a highly deserving nominee for this award.

Publications Top Noted

  • Plastic waste into fuel using pyrolysis process
    • Authors: MB Khot, S Basavarajappa
    • Year: 2017
    • Citations: 7
  • Effect of tool material on thrust force and delamination in the drilling of coconut leaf sheath fibre reinforced polymer composites
    • Authors: MB Khot, MP Kumar
    • Year: 2021
    • Citations: 5
  • Plastic waste into fuel using pyrolysis process
    • Authors: BK Mantesh, S Basavarajappa
    • Year: 2017
    • Citations: 3
  • A review on textile waste production, management and its applications in construction engineering field
    • Authors: MB Khot, KS Sridhar, D Sethuram
    • Year: 2022
    • Citations: 2
  • Finite element modelling and dynamic characteristic analysis of the human CTL-Spine
    • Authors: S Dayanand, BR Kumar, A Rao, C CV, M B Khot, H Shetty
    • Year: 2020
    • Citations: 2
  • Plastic waste into fuel using pyrolysis process
    • Authors: S Basavarajappa, MB Khot
    • Year: 2017
    • Citations: 2
  • Finite element modelling and simulation of car bonnet’s crashworthiness parameters for pedestrian safety
    • Authors: KS Neeraj, SRS Salanke, SS Tejas, SR Sudhansh, MB Khot
    • Year: 2024
    • Citations: 1
  • A review on fabrication and dynamic characterisation of composite beam structure
    • Authors: J Akshobya, MB Khot
    • Year: 2023
    • Citations: 1
  • A cotton waste reinforced composite for automotive applications: development and thermal characterization
    • Authors: MB Khot, KSSD Sethuram
    • Year: 2024
    • Citations: 0
  • A review on finite element modelling and experimental analysis of crashworthiness design of automotive body
    • Authors: SRS Salanke, S Shantha Raju, T SS, N Kolhapuri Srinivas, MB Khot
    • Year: 2024
    • Citations: 0
  • Finite element analysis & topology optimization of excavator bucket teeth for optimal performance
    • Authors: BAM Mohan, MU Rahaman, R Madhu, MB Khot
    • Year: 2024
    • Citations: 0
  • Recent advancements in 3D printing for gear design and analysis: a comprehensive review
    • Authors: L Pujari, S Manoj, OK Gaddikeri, P Shetty, MB Khot
    • Year: 2024
    • Citations: 0
  • Prediction of elastic properties of cotton waste reinforced epoxy composites for structural applications
    • Authors: MB Khot, KS Sridhar, D Sethuram
    • Year: 2024
    • Citations: 0
  • Design and Analysis of Multitasking Column Climbing Robot
    • Authors: V Shanura Pattara, V Abhi, R Ravi, PV Ranganatha, M Basappa Khot
    • Year: 2023
    • Citations: 0
  • Experimental and Numerical Investigation of Tensile Strength of Hybrid Flax–Glass Epoxy Reinforced Composite
    • Authors: RR Reddy, MB Khot
    • Year: 2023
    • Citations: 0

Aly Mousaad Aly | Engineering | Best Researcher Award

Prof. Aly Mousaad Aly | Engineering | Best Researcher Award

PhD at Louisiana State University, United States

Dr. Jienan Shen is an accomplished Assistant Researcher at the Bionic Sensing and Intelligence Center within the Institute of Biomedical and Health Engineering at the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences. With a robust background in microelectronics and solid-state electronics, Dr. Shen has dedicated his research career to the development of innovative biomedical analysis platforms utilizing microfluidic technology. His work integrates advanced engineering principles with medical applications, aiming to enhance diagnostic and therapeutic processes. An active contributor to the scientific community, Dr. Shen has published extensively and has several patents to his name. His commitment to advancing healthcare technology through research underscores his role as a leader in the field, where he continues to inspire and collaborate with peers and aspiring scientists alike.

Professional Profile

Education

Dr. Shen obtained his Ph.D. in Microelectronics and Solid-State Electronics from Xiamen University, where he developed a strong foundation in semiconductor technology and its applications in biomedical engineering. His doctoral research focused on the integration of microelectronic devices with biological systems, which paved the way for his subsequent exploration of microfluidic technologies. Following his Ph.D., Dr. Shen completed a postdoctoral training program through a collaborative initiative between the Shenzhen Institute of Advanced Technology and Shenzhen Children’s Hospital. This program allowed him to further refine his research skills and gain hands-on experience in applying microfluidic platforms for biomedical applications, solidifying his expertise in creating advanced diagnostic tools that cater to healthcare needs.

Professional Experience

Dr. Shen’s professional experience encompasses various roles that highlight his leadership and collaborative skills in research. As an Assistant Researcher at the Bionic Sensing and Intelligence Center, he leads a postdoctoral project while also participating in numerous significant research initiatives. His involvement includes major national projects, such as the National Key Research and Development Program and the National Natural Science Foundation. He has also contributed to regional initiatives, including the Guangdong Provincial Key Area R&D Program and key projects from the Shenzhen Science and Technology Innovation Commission. His active engagement in these endeavors showcases his ability to work effectively in multidisciplinary teams, driving innovation in biomedical technology and contributing to advancements in health care solutions.

Research Interests

Dr. Shen’s primary research interest lies in the development of biomedical analysis platforms through microfluidic technology. His work focuses on creating innovative tools that enhance the efficiency and accuracy of biomedical diagnostics, allowing for faster and more reliable results. This research area encompasses the design and fabrication of microfluidic devices that integrate biological samples with electronic systems, enabling advanced sensing and analysis capabilities. Dr. Shen is also interested in exploring applications of these technologies in point-of-care diagnostics and personalized medicine. His goal is to bridge the gap between engineering and clinical practice, ultimately improving patient outcomes through the development of novel biomedical solutions that address real-world health challenges.

Awards and Honors

Throughout his career, Dr. Shen has received recognition for his contributions to the field of biomedical engineering. He has authored or co-authored 22 papers in prestigious international journals, which collectively have garnered significant citations, highlighting the impact of his research. Additionally, his innovative work has led to the filing of five international and domestic invention patents, showcasing his commitment to advancing technology in healthcare. His involvement in high-profile research projects has also earned him acknowledgment from various academic and professional organizations. While specific awards may vary, Dr. Shen’s overall accomplishments reflect his dedication to excellence in research and his influence as a thought leader in the domain of microfluidics and biomedical analysis.

Conclusion

Dr. Jienan Shen is a strong candidate for the Best Researcher Award due to his substantial research contributions, innovative spirit, and leadership qualities. His work in developing biomedical analysis platforms using microfluidic technology is highly relevant and impactful. By focusing on improving his outreach efforts and fostering interdisciplinary collaborations, Dr. Shen can further enhance his influence in the scientific community. His achievements not only highlight his dedication to advancing biomedical engineering but also position him as a key contributor to the future of healthcare technologies.

Publication Top Noted

  • 📝 Rapid fabrication of a four-layer PMMA-based microfluidic chip using CO2-laser micromachining and thermal bonding
    • Authors: X Chen, J Shen, M Zhou
    • Year: 2016
    • Citations: 121
  • 🔍 Numerical analysis of mixing behaviors of two types of E-shape micromixers
    • Authors: X Chen, J Shen
    • Year: 2017
    • Citations: 93
  • 📖 Review of membranes in microfluidics
    • Authors: X Chen, J Shen
    • Year: 2017
    • Citations: 84
  • 🌱 From structures, packaging to application: A system-level review for micro direct methanol fuel cell
    • Authors: X Chen, T Li, J Shen, Z Hu
    • Year: 2017
    • Citations: 81
  • 🔄 Numerical and experimental investigation on splitting-and-recombination micromixer with E-shape mixing units
    • Authors: X Chen, J Shen
    • Year: 2017
    • Citations: 44
  • 🏗️ Manufacturing methods and applications of membranes in microfluidics
    • Authors: X Chen, J Shen, Z Hu, X Huo
    • Year: 2016
    • Citations: 38
  • 🌀 Fractal design of microfluidics and nanofluidics—A review
    • Authors: X Chen, T Li, J Shen, Z Hu
    • Year: 2016
    • Citations: 33
  • ❤️ Digital microfluidic thermal control chip-based multichannel immunosensor for noninvasively detecting acute myocardial infarction
    • Authors: J Shen, L Zhang, J Yuan, Y Zhu, H Cheng, Y Zeng, J Wang, X You, …
    • Year: 2021
    • Citations: 28
  • 📏 Design and fabrication of a D33-mode piezoelectric micro-accelerometer
    • Authors: M Xu, H Zhou, L Zhu, J Shen, Y Zeng, Y Feng, H Guo
    • Year: 2019
    • Citations: 20
  • 🔬 Simulation and experimental analysis of a SAR micromixer with F-shape mixing units
    • Authors: X Chen, J Shen
    • Year: 2017
    • Citations: 20
  • 🧬 CRISPR/Cas12a-Assisted isothermal amplification for rapid and specific diagnosis of respiratory virus on a microfluidic platform
    • Authors: J Shen, Z Chen, R Xie, J Li, C Liu, Y He, X Ma, H Yang, Z Xie
    • Year: 2023
    • Citations: 16
  • ⚡ Micro direct methanol fuel cell: functional components, supplies management, packaging technology and application
    • Authors: X Chen, Z Zhang, J Shen, Z Hu
    • Year: 2017
    • Citations: 16
  • 🔄 Design and simulation of a chaotic micromixer with diamond-like micropillar based on artificial neural network
    • Authors: X Chen, J Shen
    • Year: 2017
    • Citations: 15
  • 🖥️ Simulation in system-level based on model order reduction for a square-wave micromixer
    • Authors: X Chen, J Shen
    • Year: 2015
    • Citations: 12
  • 🔧 Fabrication and performance evaluation of two multi-layer passive micromixers
    • Authors: X Chen, J Shen, Z Hu
    • Year: 2018
    • Citations: 10
  • 🧪 Effects of annealing parameters on residual stress and piezoelectric performance of ZnO thin films studied by X-ray diffraction and atomic force microscopy
    • Authors: JN Shen, YB Zeng, MH Xu, LH Zhu, BL Liu, H Guo
    • Year: 2019
    • Citations: 8
  • 🌡️ A three-dimensional simulation analysis of fluid flow and heat transfer in microchannel heat sinks with different structures
    • Authors: J Shen, X Li, Y Zhu, B Zhang, H Guo, B Liu, H Chen
    • Year: 2021
    • Citations: 5
  • 🔬 PMMA microreactor for chemiluminescence detection of Cu (II) based on 1, 10-Phenanthroline-hydrogen peroxide reaction
    • Authors: X Chen, J Shen, T Li
    • Year: 2016
    • Citations: 4
  • 💻 A low-temperature digital microfluidic system used for protein–protein interaction detection
    • Authors: J Shen, J Liao, H Liu, C Liu, C Li, H Cheng, H Yang, H Chen
    • Year: 2023
    • Citations: 3
  • 🛠️ MEMS 中基底和薄膜的 CMP 制造技术
    • Authors: 曾毅波,张杰,许马会,郝锐,沈杰男,周辉,郭航
    • Year: 2018
    • Citations: 3

jienan Shen | Engineering | Best Researcher Award

Dr. jienan Shen | Engineering | Best Researcher Award

Research associate at Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China

Dr. Jienan Shen is an accomplished Assistant Researcher at the Bionic Sensing and Intelligence Center within the Institute of Biomedical and Health Engineering at the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences. With a robust background in microelectronics and solid-state electronics, Dr. Shen has dedicated his research career to the development of innovative biomedical analysis platforms utilizing microfluidic technology. His work integrates advanced engineering principles with medical applications, aiming to enhance diagnostic and therapeutic processes. An active contributor to the scientific community, Dr. Shen has published extensively and has several patents to his name. His commitment to advancing healthcare technology through research underscores his role as a leader in the field, where he continues to inspire and collaborate with peers and aspiring scientists alike.

Professional Profile

Education

Dr. Shen obtained his Ph.D. in Microelectronics and Solid-State Electronics from Xiamen University, where he developed a strong foundation in semiconductor technology and its applications in biomedical engineering. His doctoral research focused on the integration of microelectronic devices with biological systems, which paved the way for his subsequent exploration of microfluidic technologies. Following his Ph.D., Dr. Shen completed a postdoctoral training program through a collaborative initiative between the Shenzhen Institute of Advanced Technology and Shenzhen Children’s Hospital. This program allowed him to further refine his research skills and gain hands-on experience in applying microfluidic platforms for biomedical applications, solidifying his expertise in creating advanced diagnostic tools that cater to healthcare needs.

Professional Experience

Dr. Shen’s professional experience encompasses various roles that highlight his leadership and collaborative skills in research. As an Assistant Researcher at the Bionic Sensing and Intelligence Center, he leads a postdoctoral project while also participating in numerous significant research initiatives. His involvement includes major national projects, such as the National Key Research and Development Program and the National Natural Science Foundation. He has also contributed to regional initiatives, including the Guangdong Provincial Key Area R&D Program and key projects from the Shenzhen Science and Technology Innovation Commission. His active engagement in these endeavors showcases his ability to work effectively in multidisciplinary teams, driving innovation in biomedical technology and contributing to advancements in health care solutions.

Research Interests

Dr. Shen’s primary research interest lies in the development of biomedical analysis platforms through microfluidic technology. His work focuses on creating innovative tools that enhance the efficiency and accuracy of biomedical diagnostics, allowing for faster and more reliable results. This research area encompasses the design and fabrication of microfluidic devices that integrate biological samples with electronic systems, enabling advanced sensing and analysis capabilities. Dr. Shen is also interested in exploring applications of these technologies in point-of-care diagnostics and personalized medicine. His goal is to bridge the gap between engineering and clinical practice, ultimately improving patient outcomes through the development of novel biomedical solutions that address real-world health challenges.

Awards and Honors

Throughout his career, Dr. Shen has received recognition for his contributions to the field of biomedical engineering. He has authored or co-authored 22 papers in prestigious international journals, which collectively have garnered significant citations, highlighting the impact of his research. Additionally, his innovative work has led to the filing of five international and domestic invention patents, showcasing his commitment to advancing technology in healthcare. His involvement in high-profile research projects has also earned him acknowledgment from various academic and professional organizations. While specific awards may vary, Dr. Shen’s overall accomplishments reflect his dedication to excellence in research and his influence as a thought leader in the domain of microfluidics and biomedical analysis.

Conclusion

Dr. Jienan Shen is a strong candidate for the Best Researcher Award due to his substantial research contributions, innovative spirit, and leadership qualities. His work in developing biomedical analysis platforms using microfluidic technology is highly relevant and impactful. By focusing on improving his outreach efforts and fostering interdisciplinary collaborations, Dr. Shen can further enhance his influence in the scientific community. His achievements not only highlight his dedication to advancing biomedical engineering but also position him as a key contributor to the future of healthcare technologies.

Publication Top Noted

  • 📝 Rapid fabrication of a four-layer PMMA-based microfluidic chip using CO2-laser micromachining and thermal bonding
    • Authors: X Chen, J Shen, M Zhou
    • Year: 2016
    • Citations: 121
  • 🔍 Numerical analysis of mixing behaviors of two types of E-shape micromixers
    • Authors: X Chen, J Shen
    • Year: 2017
    • Citations: 93
  • 📖 Review of membranes in microfluidics
    • Authors: X Chen, J Shen
    • Year: 2017
    • Citations: 84
  • 🌱 From structures, packaging to application: A system-level review for micro direct methanol fuel cell
    • Authors: X Chen, T Li, J Shen, Z Hu
    • Year: 2017
    • Citations: 81
  • 🔄 Numerical and experimental investigation on splitting-and-recombination micromixer with E-shape mixing units
    • Authors: X Chen, J Shen
    • Year: 2017
    • Citations: 44
  • 🏗️ Manufacturing methods and applications of membranes in microfluidics
    • Authors: X Chen, J Shen, Z Hu, X Huo
    • Year: 2016
    • Citations: 38
  • 🌀 Fractal design of microfluidics and nanofluidics—A review
    • Authors: X Chen, T Li, J Shen, Z Hu
    • Year: 2016
    • Citations: 33
  • ❤️ Digital microfluidic thermal control chip-based multichannel immunosensor for noninvasively detecting acute myocardial infarction
    • Authors: J Shen, L Zhang, J Yuan, Y Zhu, H Cheng, Y Zeng, J Wang, X You, …
    • Year: 2021
    • Citations: 28
  • 📏 Design and fabrication of a D33-mode piezoelectric micro-accelerometer
    • Authors: M Xu, H Zhou, L Zhu, J Shen, Y Zeng, Y Feng, H Guo
    • Year: 2019
    • Citations: 20
  • 🔬 Simulation and experimental analysis of a SAR micromixer with F-shape mixing units
    • Authors: X Chen, J Shen
    • Year: 2017
    • Citations: 20
  • 🧬 CRISPR/Cas12a-Assisted isothermal amplification for rapid and specific diagnosis of respiratory virus on a microfluidic platform
    • Authors: J Shen, Z Chen, R Xie, J Li, C Liu, Y He, X Ma, H Yang, Z Xie
    • Year: 2023
    • Citations: 16
  • ⚡ Micro direct methanol fuel cell: functional components, supplies management, packaging technology and application
    • Authors: X Chen, Z Zhang, J Shen, Z Hu
    • Year: 2017
    • Citations: 16
  • 🔄 Design and simulation of a chaotic micromixer with diamond-like micropillar based on artificial neural network
    • Authors: X Chen, J Shen
    • Year: 2017
    • Citations: 15
  • 🖥️ Simulation in system-level based on model order reduction for a square-wave micromixer
    • Authors: X Chen, J Shen
    • Year: 2015
    • Citations: 12
  • 🔧 Fabrication and performance evaluation of two multi-layer passive micromixers
    • Authors: X Chen, J Shen, Z Hu
    • Year: 2018
    • Citations: 10
  • 🧪 Effects of annealing parameters on residual stress and piezoelectric performance of ZnO thin films studied by X-ray diffraction and atomic force microscopy
    • Authors: JN Shen, YB Zeng, MH Xu, LH Zhu, BL Liu, H Guo
    • Year: 2019
    • Citations: 8
  • 🌡️ A three-dimensional simulation analysis of fluid flow and heat transfer in microchannel heat sinks with different structures
    • Authors: J Shen, X Li, Y Zhu, B Zhang, H Guo, B Liu, H Chen
    • Year: 2021
    • Citations: 5
  • 🔬 PMMA microreactor for chemiluminescence detection of Cu (II) based on 1, 10-Phenanthroline-hydrogen peroxide reaction
    • Authors: X Chen, J Shen, T Li
    • Year: 2016
    • Citations: 4
  • 💻 A low-temperature digital microfluidic system used for protein–protein interaction detection
    • Authors: J Shen, J Liao, H Liu, C Liu, C Li, H Cheng, H Yang, H Chen
    • Year: 2023
    • Citations: 3
  • 🛠️ MEMS 中基底和薄膜的 CMP 制造技术
    • Authors: 曾毅波,张杰,许马会,郝锐,沈杰男,周辉,郭航
    • Year: 2018
    • Citations: 3