Xuesong Li | Materials Science | Best Researcher Award

🌟Dr. Xuesong Li, Materials Science, Best Researcher Award🏆

 Doctorate at Shandong University, China

Xuesong Li is a lecturer at the School of Nuclear Science and Engineering, North China Electric Power University, with a background in Materials Science and Engineering. He obtained his Ph.D. from the State Key Laboratory of Crystal Materials at Shandong University, where he also worked as a postdoctoral researcher. Li’s research focuses on the preparation of MXene and its device applications, as well as the synthesis of large-size, high-quality halide scintillation single crystals.

Author Metrics

Scopus Profile

Xuesong Li has a strong publication record with several articles published in high-impact journals such as Chemical Engineering Journal, Advanced Materials, and Advanced Functional Materials. His research has garnered attention in the scientific community, as evidenced by his publications’ citation metrics and journal impact factors.

Xuesong Li is affiliated with the State Key Laboratory of Crystal Materials in Jinan, China. He has an Scopus Author Identifier and has been cited 223 times across 217 documents. His h-index is 6, indicating the number of papers (h) that have received at least h citations. Li has authored 11 documents.

Education

Li completed his Ph.D. in Materials Science and Engineering at the State Key Laboratory of Crystal Materials, Shandong University. Prior to this, he earned his bachelor’s degrees in Materials Engineering and Polymer Materials and Engineering from Taiyuan University of Technology and Liaocheng University, respectively.

Research Focus

Li’s primary research interests include the preparation of MXene and its applications in various devices, along with the synthesis and characterization of large-size, high-quality halide scintillation single crystals. His work contributes to the advancement of materials science and engineering, particularly in the development of novel materials for diverse applications.

Professional Journey

After completing his Ph.D., Li served as a postdoctoral researcher at the State Key Laboratory of Crystal Materials, Shandong University, where he conducted research under the supervision of Professors Xutang Tao and Zeliang Gao. He currently holds a position as a lecturer at the School of Nuclear Science and Engineering, North China Electric Power University, where he continues his research and contributes to the academic community.

Honors & Awards

Throughout his academic journey, Xuesong Li has received numerous honors and awards, including national scholarships, recognition as an excellent student in Shandong Province, and the National Inspirational Scholarship. His outstanding academic achievements reflect his dedication to excellence in research and education.

Publications Noted & Contributions

Li has made significant contributions to the field of materials science through his publications in reputable journals. His research on MXene synthesis methods, halide scintillation single crystals, and their applications in various devices has advanced the understanding of these materials and their potential applications in areas such as energy storage, biomedical engineering, and radiation detection.

“Achieving a Record Scintillation Performance by Micro-Doping a Heterovalent Magnetic Ion in Cs3Cu2I5 Single-Crystal”

  • Authors: Yao, Q., Li, J., Li, X., …, Wang, Z., Tao, X.
  • Published in: Advanced Materials, 2023, 35(44), 2304938
  • Summary: This study reports on achieving record scintillation performance by micro-doping a heterovalent magnetic ion in Cs3Cu2I5 single-crystal. Scintillation materials are crucial in various fields such as medical imaging and radiation detection, and this research likely presents a significant advancement in this area.

“Ambient-stable MXene with superior performance suitable for widespread applications”

  • Authors: Li, X., Ma, X., Zhang, H., …, Zhang, J., Tao, X.
  • Published in: Chemical Engineering Journal, 2023, 455, 140635
  • Summary: This paper introduces an ambient-stable MXene material with superior performance, which holds potential for widespread applications. MXenes are a class of two-dimensional materials known for their unique properties, and achieving stability under ambient conditions enhances their utility in various fields.

“Passively Q-switched single crystal fiber pulsed laser at 1.05 µm with T3C2Tx as the saturable absorber”

  • Authors: Ma, X., Xue, N., Wang, T., …, He, J., Tao, X.
  • Published in: Optics Express, 2022, 30(25), pp. 44617–44627
  • Summary: This study presents a passively Q-switched single crystal fiber pulsed laser operating at 1.05 µm, with T3C2Tx as the saturable absorber. Q-switched lasers have applications in various fields such as telecommunications, laser surgery, and spectroscopy.

“High-Quality Cs3Cu2I5 Single-Crystal is a Fast-Decaying Scintillator”

  • Authors: Yao, Q., Li, J., Li, X., …, Wang, Z., Tao, X.
  • Published in: Advanced Optical Materials, 2022, 10(23), 2201161
  • Summary: This paper investigates the properties of high-quality Cs3Cu2I5 single-crystal as a fast-decaying scintillator. Understanding the decay characteristics of scintillators is crucial for optimizing their performance in various applications.

“Highly tumoricidal efficiency of non-oxidized MXene-Ti3C2Tx quantum dots on human uveal melanoma”

  • Authors: Zhang, H., Li, X., You, P., …, Tao, X., Qu, Y.
  • Published in: Frontiers in Bioengineering and Biotechnology, 2022, 10, 1028470
  • Summary: This study investigates the highly tumoricidal efficiency of non-oxidized MXene-Ti3C2Tx quantum dots on human uveal melanoma. MXene-based nanomaterials hold promise for various biomedical applications, including cancer therapy, due to their unique properties and biocompatibility.

Research Timeline

2010-2014: Bachelor’s education in Materials Engineering and Polymer Materials and Engineering 2014-2017: Bachelor’s research at Taiyuan University of Technology 2017-2021: Ph.D. research at Shandong University 2021-2024: Postdoctoral research at Shandong University 2024-Present: Lecturer at North China Electric Power University

Collaborations and Projects

Xuesong Li has collaborated with leading researchers in the field of materials science, including Professors Xutang Tao and Zeliang Gao at Shandong University. His research projects encompass a wide range of topics, from the synthesis of novel materials to the development of advanced devices for practical applications. Collaborations with academic and industrial partners enhance the impact and applicability of his research findings.

 

Deep Shankar | Materials Science | Best Scholar Award

🌟Mr. Deep Shankar, Materials Science, Best Scholar Award 🏆

  Deep Shankar at National Institute of Technology, Karnataka, India

Deep Shankar is a Ph.D. candidate in Mechanical Engineering at the National Institute of Technology Karnataka (NITK), Surathkal. With an M.Tech in Manufacturing Systems Engineering from Sant Longowal Institute of Engineering & Technology (SLIET) and a B.E. in Mechanical Engineering from JSSATE, Bengaluru, Deep’s academic journey reflects his passion for engineering and research. His expertise spans from project management and leadership to analytical skills and teaching experience. Deep is committed to contributing his knowledge and skills to the field while fostering continuous learning and teamwork.

Author Metrics:

Deep’s contributions have been recognized through his author metrics, including citations, impact factor of publications, and h-index, reflecting the significance of his research in the academic community.

ORCID Profile

Scopus Profile

Google Scholar Profile

Prabhu Shankar, associated with the National Institute of Technology Karnataka (NITK) in Mangalore, India. The profile indicates that Deep Prabhu Shankar has 21 citations from 21 documents, with an h-index of 1.

Education:

Deep Shankar holds a Ph.D. in Mechanical Engineering from NITK, Surathkal, with a focus on improving the properties of thermally sprayed hydroxyapatite bio-ceramic coatings. He also earned an M.Tech in Manufacturing Systems Engineering from SLIET, Sangrur, and a B.E. in Mechanical Engineering from JSSATE, Bengaluru.

Research Focus:

Deep’s research focuses on enhancing the properties of bio-ceramic coatings for orthopedic applications. His work involves incorporating reinforcements like alumina and functionalized carbon nanotubes to improve the performance and longevity of these coatings.

Professional Journey:

Deep has over four years of experience as a Teaching Assistant at NITK, Surathkal, along with extensive experience teaching at various levels, including JEE Mains/NEET and board exams. He has also worked as a Doubt Solver at Aakash EduTech Private Limited and has hands-on experience with advanced analytical tools like FESEM, TEM, and Raman spectroscopy.

Honors & Awards:

Throughout his academic journey, Deep has received prestigious scholarships such as the MHRD scholarship for his M.Tech and the Institute Assistance Scholarship for his Ph.D. He has also received distinctions in his B.E. and has qualified for competitive exams like the Graduate Aptitude Test in Engineering.

Publications Top Noted & Contributions:

Deep has contributed to the field through research publications and presentations. Notably, he has presented his work on biomaterials’ blood-compatibility assessment at national and international workshops and conferences.

Title: “Effect of Surface Chemistry on Hemolysis, Thrombogenicity, and Toxicity of Carbon Nanotube Doped Thermally Sprayed Hydroxyapatite Implants”

  • Published in: ACS Biomaterials Science & Engineering in 2024.
  • Focus: This study investigates how variations in surface chemistry, influenced by the incorporation of carbon nanotubes and thermal spraying techniques, impact the hemolysis, thrombogenicity, and toxicity of hydroxyapatite-based orthopedic implants.
  • Key Findings: The article likely discusses the results of in vitro experiments assessing the hemolytic potential, thrombogenicity, and toxicity of the implants with different surface chemistries. It may reveal insights into how surface modifications affect the interaction between the implants and blood components, potentially influencing their biocompatibility.

Title: “Thermal spray processes influencing surface chemistry and in-vitro hemocompatibility of hydroxyapatite-based orthopedic implants”

  • Published in: Biomaterials Advances with the identifier 213791.
  • Focus: This study specifically investigates the impact of various thermal spray processes on the surface chemistry and in vitro hemocompatibility of hydroxyapatite-based orthopedic implants.
  • Key Findings: The article likely delves into the effects of different thermal spray techniques on the surface characteristics of the implants and how these modifications influence their interactions with blood components. It may provide insights into optimizing thermal spray processes to enhance the hemocompatibility of orthopedic implants.

Research Timeline:

Deep’s research journey spans from his undergraduate years to his current Ph.D. candidacy. Starting with his B.E. project on a portable wind charger, he has progressed to delve into advanced topics in manufacturing systems and bio-ceramic coatings, showcasing a consistent commitment to research and academic excellence.

Sreelakshm Krishna | Materials Science | Best Researcher Award

🌟Ms. Sreelakshm Krishna, Materials Science, Best Researcher Award 🏆

Sreelakshm Krishna at Madurai Kamaraj University, India

Sreelakshmi Krishna, a 27-year-old researcher currently pursuing a Ph.D. at the National Forensic Sciences University. Married and residing in Thrissur, India, my academic journey has been marked by a passion for Physics and Forensic Sciences. I hold an MPhil in Physics from Madurai Kamaraj University and completed my Integrated M.Sc in Physics/Mathematics from Amrita University. I have a strong foundation in academia, coupled with practical experience as an Assistant Professor at PM Thevar College, Madurai.

Google Scholar Profile

Orcid Profile

Education:

Pursuing Ph.D. at National Forensic Sciences University

MPhil Physics, Madurai Kamaraj University, 2019-21 (73%)

Integrated M.Sc Physics/Mathematics, Amrita University, 2013-18 (CGPA 7.02)

ISC Board – Hari Sri Vidya Nidhi School, Thrissur, 2012 (75%)

ICSE Board – Hari Sri Vidya Nidhi School, Thrissur, 2010 (81%)

Academic Achievements:

Sreelakshmi’s academic journey continued with an MPhil in Physics at Madurai Kamaraj University, where she excelled, graduating with distinction. Her commitment to learning extended further as she currently pursues a Ph.D. at the National Forensic Sciences University. Throughout her educational endeavors, she consistently demonstrated a passion for physics and an eagerness to delve into interdisciplinary research.

Professional Experience:

In 2019, Sreelakshmi stepped into the realm of academia as an Assistant Professor in the Department of Forensic Science at PM Thevar College, Madurai. This professional stint provided her with valuable insights into the practical applications of her academic expertise, enhancing her overall understanding of forensic science.

Research Focus and Contributions:

Sreelakshmi’s research journey showcases a profound interest in the intersection of Physics and Forensic Sciences. Her notable contributions include a narrative review on gunshot residue detection techniques and demographical identification of trace metals in soil samples. Moreover, her recent work on the preparation and characterization of copper gallium sulphide thin films exhibits a commitment to advancing materials science.

Awards and Recognition:

In recognition of her contributions, Sreelakshmi received the “Best Young Women Scientist Award” for her oral presentation at the 5th International Conference on Forensic Research and Toxicology in Singapore. This acknowledgment underscores her dedication and expertise in the field.

Personal Interests and Skills:

Beyond academia, Sreelakshmi is a multifaceted individual with skills ranging from programming in C to proficiency in MATLAB. Her involvement in cultural activities, such as mime and painting, along with formal training in singing and dancing, reflects her creative side. Balancing academic rigor with artistic expression, she is a well-rounded individual.

Declaration and Future Aspirations:

Sreelakshmi Krishna affirms the accuracy of the provided information in her biography, reflecting her academic journey, professional experiences, and personal interests. As she continues her pursuit of knowledge through her Ph.D., she remains dedicated to contributing meaningfully to the fields of Physics and Forensic Sciences.

Publications Top Noted & Contributions:

I have made significant contributions to the field, with publications in reputable journals such as IntechOpen and the Egypt Journal of Forensic Science. My recent work includes a paper on the preparation and characterization of copper gallium sulphide thin films.

A Chronological Study of Gunshot (GSR) Detection Techniques: A Narrative Review

Author: SKP Ahuja

Published in: Egyptian Journal of Forensic Science

Cited By: Not specified

Year: 2023

Abstract: This narrative review presents a chronological study of gunshot residue (GSR) detection techniques. Delving into the evolution of methodologies over time, the paper provides insights into the advancements in forensic science concerning gunshot residue analysis.

Demographical Identification of Trace Metals Found in Soil Samples from India

Authors: S Krishna, P Ahuja

Published in: IntechOpen

Cited By: Not specified

Year: 2023

Abstract: This publication focuses on the demographical identification of trace metals in soil samples sourced from India. The study contributes to the understanding of soil composition, with potential implications for forensic investigations and environmental sciences.

Preparation and Characterization of Pristine and Sn Doped Copper Gallium Sulphide (CGS) Thin Films Using Spray Pyrolysis Technique

Authors: S Krishna, V Vasu

Published in: Available at SSRN 4600102

Cited By: Not specified

Year: Not specified

Abstract: This work details the preparation and characterization of pristine and Sn doped Copper Gallium Sulphide (CGS) thin films using the spray pyrolysis technique. The paper explores the structural and chemical properties of these thin films, contributing to materials science research.

Research Timeline:

MPhil Project: “Preparation and characterization of pure and Sn doped Copper Gallium Sulphide Thin films” (Madurai Kamaraj University)

MSc Main Project: “Understanding Solid State Gas Sensor Application” (CSIR National Physical Laboratory, New Delhi)

BSc Mini Project: “Preparation and characterization of ZnO thin films” (Amrita Vishwa Vidyapeetham, Amritapuri)

This timeline underscores my commitment to academic and practical research, contributing to advancements in forensic science.

Fanbin Meng | Materials Science | Best Researcher Award

🌟 Prof Dr. Fanbin Meng, Southwest Jiaotong University, China: Materials Science🏆

Professional Profiles:

Bio Summary:

Dr. Fanbin Meng is a distinguished male professor in the field of Materials Science and Engineering, specializing in Electromagnetic Functional Materials. Born on March 22nd, 1985, he currently holds a position at Southwest Jiaotong University, where he serves as a doctoral supervisor. Dr. Meng has earned his Doctorate and has been recognized for his exceptional contributions to the field of Material Science.

Education:

  • Ph.D. in Materials Science and Engineering

Professional Journey:

Dr. Meng has an illustrious career, holding the position of Professor in the School of Materials Science and Engineering at Southwest JiaoTong University. He is also recognized as an eagle scholar at the university and a science and technology nova. His primary focus lies in the design, preparation, and research of electromagnetic protection materials.

Research Focus:

  • Electromagnetic Functional Materials
  • Lightweight Broadband High-efficiency Absorbing Materials
  • Polymer Composites
  • Functional Polymers
  • Nanomaterials and Applications

Honors & Awards:

  • Winner of Sichuan Outstanding Youth Fund
  • Selected as one of the World’s Top 2% Scientists in 2022
  • 13th Invention and Entrepreneurship Award • Person Award in 2023

Publications Top Noted & Contributions:

Dr. Meng has an impressive publication record, with over 70 SCI papers and 17 invention patents. His research has garnered significant attention, with a citation index of 4690 and an H-index of 36. Notably, he has authored 50 papers as the first and corresponding author, including highly cited and hot papers.

Title: Graphene-based microwave absorbing composites: A review and prospective

  • Authors: F Meng, H Wang, F Huang, Y Guo, Z Wang, D Hui, Z Zhou
  • Journal: Composites Part B: Engineering
  • Year: 2018
  • Volume, Pages: 137, 260-277
  • Citations: 587

Title: Interface modulating CNTs@ PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption

  • Authors: H Wang, F Meng, F Huang, C Jing, Y Li, W Wei, Z Zhou
  • Journal: ACS applied materials & interfaces
  • Year: 2019
  • Volume, Pages: 11 (12), 12142-12153
  • Citations: 277

Title: Carbonized Design of Hierarchical Porous Carbon/Fe3O4@Fe Derived from Loofah Sponge to Achieve Tunable High-Performance Microwave Absorption

  • Authors: H Wang, F Meng, J Li, T Li, Z Chen, H Luo, Z Zhou
  • Journal: ACS Sustainable Chemistry & Engineering
  • Year: 2018
  • Volume, Pages: 6 (9), 11801-11810
  • Citations: 245

Title: Growth of NiAl‐Layered Double Hydroxide on Graphene toward Excellent Anticorrosive Microwave Absorption Application

  • Authors: X Xu, S Shi, Y Tang, G Wang, M Zhou, G Zhao, X Zhou, S Lin, F Meng
  • Journal: Advanced Science
  • Year: 2021
  • Volume, Pages: 8 (5), 2002658
  • Citations: 229

Title: Electrospun generation of Ti3C2Tx MXene@ graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption

  • Authors: Y Li, F Meng, Y Mei, H Wang, Y Guo, Y Wang, F Peng, F Huang, Z Zhou
  • Journal: Chemical Engineering Journal
  • Year: Not provided
  • Volume, Pages: 391, 123512

Author Metrics:

  • Citations: 4,696
  • Documents: 95
  • h-index: 36

Research Timeline:

  • Completed and ongoing research projects: 30
  • Total cost of all projects: USD 1,800,000
  • Number of patents published and under process: 22
  • Journals published in SCI and SCIE index: 70
  • Editorial appointments in journals/conferences: 4
  • Cumulative impact factor of the last 3 years:

Contributions and Innovations:

Dr. Meng has contributed significantly to the field through research on controllable preparation of wave absorbers, electromagnetic loss mechanisms, and the application of wave absorbers. His focus on lightweight broadband high-efficiency absorbing materials has resulted in distinctive research outcomes.

This esteemed scientist has also proposed innovative ideas, such as intelligent anti-corrosion coatings based on salt response, visual coating local defect self-monitoring, and self-healing. His work involves in-depth research on microcapsule slow-release molecular regulation mechanisms, local defect self-monitoring, and self-healing, ultimately enhancing anti-corrosion performance.

Overall, Dr. Fanbin Meng’s research and contributions have earned him recognition, awards, and a prominent place in the global scientific community.