Naeem Ullah | Computer Science | Best Researcher Award

Mr. Naeem Ullah | Computer Science | Best Researcher Award

PhD Student at Software Engineering Research Group (SERG-UOM) University of Malakand, Pakistan

Mr. Naeem Ullah is a dedicated academic and researcher currently pursuing a PhD in Computer Science, with a focus on cybersecurity challenges in vehicle-to-vehicle communication from a software engineering perspective. Holding a strong academic record with a CGPA of 3.75/4.00, he has presented his research at international forums, such as the 2nd Annual International Workshop on Software Engineering, where he shared his Multivocal Literature Review (MLR) protocol on cybersecurity culture. Mr. Ullah has also received recognition for his teaching excellence, earning the Best Teacher Award in 2018. His work experience includes roles as a lecturer at the University Model College KPK, part-time tutor at Allama Iqbal Open University, and facilitator for continuous professional development programs for teachers. His research, currently under review, addresses crucial cybersecurity issues in vehicle-to-vehicle communications. Mr. Ullah’s commitment to furthering his knowledge is evident through multiple certifications in data science, networking, and cybersecurity.

Professional Profile 

Education

Mr. Naeem Ullah has a strong educational background in Computer Science. He is currently pursuing a PhD in Computer Science with a focus on cybersecurity challenges in vehicle-to-vehicle communication, maintaining an impressive CGPA of 3.75/4.00. His research aims to develop a mitigation model for cybersecurity issues in connected vehicle systems, reflecting his deep engagement with current technological challenges. Mr. Ullah completed his Master’s degree in Computer Science in 2019, achieving a CGPA of 3.7/4.00, with his thesis titled Software Development Process Improvement Model for Small Pakistani Software Development Companies. He also holds a Bachelor’s degree in Computer Science from 2014, with a CGPA of 3.62/4.00. His final year project, Auction Management System, showcased his ability to apply practical solutions to real-world problems. Mr. Ullah’s academic journey is marked by consistent excellence and a strong commitment to advancing his expertise in the field of computer science.

Professional Experience

Mr. Naeem Ullah has accumulated diverse professional experience in both academic and research roles. He has served as a Lecturer in Computer Science at the University Model College KPK, Peshawar, Pakistan, where he taught and mentored students in various computer science subjects. In addition, he has worked as a part-time tutor for Allama Iqbal Open University, Islamabad, since 2022, focusing on Information and Communication Technologies (ICT). Mr. Ullah has also contributed to teacher development programs, serving as a facilitator for the Continuous Professional Development (CPD) of Primary School Teachers (PSTs) through the Provincial Institute of Teacher Education (PITE) in KPK. His role as a part-time researcher at the Department of Computer Science and IT at the University of Malakand further underscores his involvement in academic research. Earlier in his career, he worked as a Secondary School Teacher at the Elementary and Secondary Education Department, KPK. His experiences reflect a blend of teaching, research, and educational development.

Research Interest

Mr. Naeem Ullah’s research interests primarily focus on cybersecurity, particularly in the context of emerging technologies such as vehicle-to-vehicle (V2V) communication. His PhD research investigates cybersecurity challenges and proposes mitigation models for securing V2V communication systems from a software engineering perspective. This area of research is highly relevant due to the increasing integration of connected vehicles and the need for secure communication protocols to protect sensitive data. Additionally, Mr. Ullah is interested in software engineering, with a particular emphasis on improving software development processes for small software companies in Pakistan, as demonstrated in his Master’s thesis. He has also contributed to the field of cybersecurity culture through his work on a Multivocal Literature Review (MLR) protocol, which identifies cybersecurity challenges and best practices in V2V communication. His research endeavors aim to address critical issues in both cybersecurity and software engineering, contributing to the development of safer, more efficient technologies.

Award and Honor

Mr. Naeem Ullah has received notable recognition for his academic and professional achievements. In 2022, he presented his Multivocal Literature Review (MLR) Protocol at the 2nd Annual International Workshop on Software Engineering (WSE-2022), organized by the Software Engineering Research Group at the University of Malakand. This presentation, focused on Cybersecurity Culture, showcased his expertise and contribution to the field of cybersecurity. Additionally, Mr. Ullah earned the prestigious Best Teacher Award from the Director of Elementary and Secondary Education, KPK, Pakistan, in 2018. This recognition highlights his excellence in teaching and his commitment to fostering the growth and development of his students. These awards and honors reflect Mr. Ullah’s dedication to advancing both his academic research and educational practices, demonstrating his commitment to the fields of computer science and cybersecurity while contributing positively to the educational community.

Conclusion

Naeem Ullah is a promising candidate for the Best Researcher Award, with a solid academic record, a focused and impactful research topic, and a commitment to both education and professional development. His strengths lie in his dedication to advancing cybersecurity research in emerging technologies like vehicle-to-vehicle communication and his capacity for leadership in educational initiatives. To further enhance his candidacy, Naeem could focus on increasing his research output, expanding his research scope, and engaging more in international collaborations to elevate the impact of his work.

Publications Top Noted

  • Title: Solutions to Cybersecurity Challenges in Secure Vehicle-to-Vehicle Communications: A Multivocal Literature Review
    Authors: Naeem Ullah, S.U. Khan, M. Niazi, A.A. Khan, J.A. Nasir
    Journal: Information and Software Technology
    Year: 2025
    Volume: 179
    Article ID: 107639
    Citations: 0
  • Title: Challenges and Their Practices in Adoption of Hybrid Cloud Computing: An Analytical Hierarchy Approach
    Authors: S.U. Khan, H.U. Khan, Naeem Ullah, R.A. Khan
    Journal: Security and Communication Networks
    Year: 2021
    Article ID: 1024139
    Citations: 2
  • Title: Internet of Things for Healthcare Using Effects of Mobile Computing: A Systematic Literature Review
    Authors: S. Nazir, Y. Ali, Naeem Ullah, I. García-Magariño
    Journal: Wireless Communications and Mobile Computing
    Year: 2019
    Article ID: 5931315
    Citations: 138
  • Title: Practices for Clients in the Adoption of Hybrid Cloud
    Authors: S.U. Khan, Naeem Ullah
    Journal: Proceedings of the Pakistan Academy of Sciences: Part A
    Year: 2017
    Volume: 54(1A)
    Pages: 13–32
    Citations: 3

Hossein Nematzadeh | Computer Science | Best Researcher Award

Dr. Hossein Nematzadeh | Computer Science | Best Researcher Award

Assist Prof at Universidad de Malaga, Spain

Dr. Hossein Nematzadeh is an accomplished researcher and academic with a Ph.D. in Computer Science from the University of Technology, Malaysia. He is currently an Assistant Professor at the Modern College of Business and Science in Oman, with prior experience as a researcher at Universidad de Málaga, Spain, and an assistant professor at Islamic Azad University, Iran. His research interests span Data Science, Artificial Intelligence, Cryptography, and Software Engineering, with a particular focus on explainable AI, feature selection, evolutionary algorithms, and image encryption. Dr. Nematzadeh has published extensively in high-impact journals, contributing to advancements in AI and machine learning. He is also an experienced educator, having taught a wide array of computer science courses at various academic levels. With expertise in technologies like Python, MATLAB, and AWS, he is committed to both advancing research and mentoring the next generation of computer scientists.

Professional Profile 

Education

Dr. Hossein Nematzadeh has a strong academic foundation in Computer Science, having completed his Ph.D. at the University of Technology, Malaysia in 2014. Prior to his doctoral studies, he earned his Master’s degree from the same institution in 2009, further solidifying his expertise in the field. Dr. Nematzadeh also holds a Bachelor’s degree from Mazandaran University of Science and Technology, obtained in 2007. His educational journey reflects a deep commitment to the study of computer science, particularly in areas such as Artificial Intelligence, Data Science, and Cryptography. Throughout his academic career, he has gained a robust understanding of both theoretical and practical aspects of the field, which has informed his subsequent research and teaching. This solid educational background, combined with his ongoing research contributions, enables him to be a leader in his academic and professional endeavors.

Professional Experience

Dr. Hossein Nematzadeh has extensive professional experience in academia and research. He is currently serving as an Assistant Professor at the Modern College of Business and Science in Oman, where he teaches and supervises students in the field of Computer Science. Prior to this role, he was a researcher at Universidad de Málaga in Spain from 2021 to 2024, contributing to several high-impact research projects in Artificial Intelligence and Data Science. From 2012 to 2021, he served as an Assistant Professor at Islamic Azad University in Iran, where he taught various computer science courses and engaged in research activities. Throughout his career, Dr. Nematzadeh has built a reputation as both an educator and a researcher, publishing extensively in leading journals and presenting his work in international forums. His expertise spans across Data Science, Artificial Intelligence, and Cryptography, making him a prominent figure in these fields.

Research Interest

Dr. Hossein Nematzadeh’s research interests lie at the intersection of Data Science, Artificial Intelligence, Cryptography, and Software Engineering. He is particularly focused on developing advanced techniques in explainable AI, feature selection, and noise detection, with an emphasis on making AI models more interpretable and reliable. His work in evolutionary algorithms and fuzzy logic explores ways to optimize decision-making processes and improve system performance. Dr. Nematzadeh is also passionate about cryptography, specifically in areas such as image encryption, which contributes to enhancing data security in digital environments. Additionally, he has a strong interest in software engineering, with research dedicated to verification and validation processes, as well as the application of Petri nets to model and analyze complex systems. His research aims to push the boundaries of AI and machine learning, providing solutions to both theoretical and practical challenges in these rapidly evolving fields.

Award and Honor

Dr. Hossein Nematzadeh has earned recognition for his contributions to research and academia throughout his career. He has received several honors for his work in the fields of Data Science, Artificial Intelligence, and Cryptography, particularly for his research on explainable AI and feature selection methods. Dr. Nematzadeh’s scholarly impact is reflected in his publications in prestigious journals such as Engineering Applications of Artificial Intelligence and Knowledge-Based Systems. His work has been widely cited, demonstrating the influence of his research on the scientific community. In addition to his academic accomplishments, Dr. Nematzadeh has been actively involved in mentoring students and contributing to the advancement of his field through teaching and supervision. His dedication to fostering new talent in Computer Science and his continuous pursuit of research excellence have earned him respect within academic circles, making him a highly regarded figure in the global academic and research community.

Publications Top Noted

  • Title: Medical image encryption using a hybrid model of modified genetic algorithm and coupled map lattices
    Authors: H Nematzadeh, R Enayatifar, H Motameni, FG Guimarães, VN Coelho
    Year: 2018
    Cited by: 157
  • Title: A hybrid feature selection method based on information theory and binary butterfly optimization algorithm
    Authors: Z Sadeghian, E Akbari, H Nematzadeh
    Year: 2021
    Cited by: 116
  • Title: Heuristic filter feature selection methods for medical datasets
    Authors: M Alirezanejad, R Enayatifar, H Motameni, H Nematzadeh
    Year: 2020
    Cited by: 78
  • Title: Binary search tree image encryption with DNA
    Authors: H Nematzadeh, R Enayatifar, M Yadollahi, M Lee, G Jeong
    Year: 2020
    Cited by: 72
  • Title: Frequency based feature selection method using whale algorithm
    Authors: H Nematzadeh, R Enayatifar, M Mahmud, E Akbari
    Year: 2019
    Cited by: 66
  • Title: Emergency role-based access control (E-RBAC) and analysis of model specifications with alloy
    Authors: F Nazerian, H Motameni, H Nematzadeh
    Year: 2019
    Cited by: 52
  • Title: Predicting air pollution in Tehran: Genetic algorithm and back propagation neural network
    Authors: M Asghari, H Nematzadeh
    Year: 2016
    Cited by: 51
  • Title: A novel image security technique based on nucleic acid concepts
    Authors: M Yadollahi, R Enayatifar, H Nematzadeh, M Lee, JY Choi
    Year: 2020
    Cited by: 33
  • Title: Mapping to convert activity diagram in fuzzy UML to fuzzy petri net
    Authors: H Motameni, A Movaghar, I Daneshfar, H Nemat Zadeh, J Bakhshi
    Year: 2008
    Cited by: 30
  • Title: Automatic ensemble feature selection using fast non-dominated sorting
    Authors: S Abasabadi, H Nematzadeh, H Motameni, E Akbari
    Year: 2021
    Cited by: 28
  • Title: A mixed solution-based high agreement filtering method for class noise detection in binary classification
    Authors: M Samami, E Akbari, M Abdar, P Plawiak, H Nematzadeh, ME Basiri, …
    Year: 2020
    Cited by: 24
  • Title: Comparison of Decision Tree Methods in Classification of Researcher’s Cognitive Styles in Academic Environment
    Authors: ZN Balagatabi, R Ibrahim, HN Balagatabi
    Year: 2015
    Cited by: 24