Zhaozhen Jiang | Computer Science | Best Research Article Award

Dr. Zhaozhen Jiang | Computer Science | Best Research Article Award

Assistant Researcher | Naval Submarine Academy | China

Dr. Zhaozhen Jiang is a distinguished researcher at the Navy Submarine Academy in Qingdao, China, specializing in intelligent systems, maritime navigation, and dynamic target search. His research focuses on the development of advanced path-planning algorithms and neural network–based optimization techniques for complex maritime environments. He has published extensively and collaborated widely with researchers across multiple disciplines, reflecting a strong commitment to interdisciplinary innovation. His recent work on GBNN-based maritime dynamic target search demonstrates a focus on enhancing operational decision-making and situational awareness in challenging naval contexts. Through his research, he aims to advance autonomous maritime systems and contribute to safer, more efficient naval operations, while fostering technological progress with meaningful societal impact.

Citation Metrics (Scopus)

40
30
20
10
0

Citations

37

Documents

15

h-index

4

Citations

Documents

h-index

View Scopus Profile

Featured Publications

Sarbajit Paul Bappy | Computer Science | Research Excellence Award

Mr. Sarbajit Paul Bappy | Computer Science | Research Excellence Award

Teaching Assistant | Daffodil International University | Bangladesh

Sarbajit Paul Bappy is an emerging researcher in computer science with a growing focus on applied machine learning, medical image analysis, and agricultural informatics. He is currently serving as a Teaching Assistant in the Department of Computer Science and Engineering at Daffodil International University, Bangladesh, where he has been contributing to academic instruction and research support since 2025. Alongside his professional role, he is pursuing his undergraduate degree in Computer Science and Engineering at the same institution, demonstrating a strong integration of academic excellence and early-career research productivity. His scholarly work includes peer-reviewed publications and openly accessible datasets that address critical challenges in healthcare diagnostics and smart agriculture. Notably, he co-authored SkinVisualNet: A Hybrid Deep Learning Approach Leveraging Explainable Models for Identifying Lyme Disease from Skin Rash Images (MAKE, 2025), which combines deep learning with explainable AI techniques to enhance early disease detection. He also contributed significantly to the dataset Jackfruit AgroVision, a comprehensive benchmark for disease detection in jackfruit and its leaves, supporting advancements in precision agriculture and food-security research. His collaborations span multidisciplinary teams involving experts such as Amir Sohel, Rittik Chandra Das Turjy, Md Assaduzzaman, Ahmed Al Marouf, Jon George Rokne, and Reda Alhajj, illustrating his ability to contribute within diverse international research groups. Through his ongoing work in AI-driven health diagnostics, dataset development, and sustainable agricultural technology, Bappy aims to advance research that supports societal well-being, improves disease detection accuracy, and contributes to innovation within global machine learning communities.

Profiles: Google Scholar | ORCID | LinkedIn

Featured Publications

1. Sohel, A., Turjy, R. C. D., Bappy, S. P., Assaduzzaman, M., Marouf, A. A., Rokne, J. G., & Alhajj, R. (2025). SkinVisualNet: A Hybrid Deep Learning Approach Leveraging Explainable Models for Identifying Lyme Disease from Skin Rash Images. Machine Learning and Knowledge Extraction, 7(4), 157. https://doi.org/10.3390/make7040157  MDPI+1

2. Sohel, A., Bijoy, M. H. I., Turjy, R. C. D., & Bappy, S. P. (2025). Jackfruit AgroVision: A Extensive Dataset for Jackfruit Disease and Leaf Disease Detection using Machine Learning. Mendeley Data. https://doi.org/10.17632/pt647jfn52.1

Mona Almutairi | Artificial Intelligence | Best Researcher Award

Ms. Mona Almutairi | Artificial Intelligence | Best Researcher Award

Shaqra University | Saudi Arabia

Ms. Mona Almutairi is a highly motivated computer science graduate with a strong academic foundation and practical experience in system engineering and data management. She completed her Bachelor’s degree in Computer Science from Shaqra University in 2019 with an impressive GPA of 4.19 out of 5, demonstrating consistent academic excellence. Her professional experience includes serving as a System Engineer at the Ministry of Economy and Planning, where she contributed to optimizing systems operations and enhancing digital workflows, as well as volunteering as a Data Entry Assistant at the Ministry of Health, where she efficiently managed and organized large datasets with accuracy and confidentiality. She further enriched her technical expertise through professional courses in Software Engineering from the Saudi Digital Academy and Web Development from the Ministry of Communications and Information Technology, equipping her with up-to-date industry knowledge and coding proficiency. Her research interests lie in software development, data analysis, and emerging technologies that integrate innovation with societal advancement. Ms. Almutairi’s research skills include proficiency in data analysis tools, problem-solving, and the ability to apply algorithmic thinking to real-world challenges. She is also adept at using Microsoft Office and has strong communication, teamwork, and adaptability skills, making her a collaborative and reliable professional. Her dedication to learning and excellence has been recognized through various academic and professional achievements, reflecting her commitment to continuous improvement. Overall, Ms. Almutairi is a forward-thinking computer scientist who combines technical knowledge, analytical capabilities, and professional experience to drive innovation in the field of information technology.

Profiles: Google Scholar | ORCID

Featured Publications

Almutairi, M., & Dardouri, S. (2025). Intelligent hybrid modeling for heart disease prediction. Information, 16(10), 869. Citations: 1

Nalini Manogara | Artificial Intelligence | Best Academic Researcher Award

Dr. Nalini Manogara | Artificial Intelligence |  Best Academic Researcher Award

Associate Professor  at S.A. Engineering College, India

Dr. M. Nalini is a distinguished academician with over 14 years of teaching and research experience in Computer Science and Engineering. Currently serving as an Associate Professor, she has demonstrated excellence in academia through her impactful publications in high-ranking SCI and Scopus-indexed journals, focusing on areas like wireless sensor networks, cloud healthcare systems, and network security. Dr. Nalini has received several prestigious awards, including the Best Research Award (2019) and Academic Excellence Award (2024). She has actively contributed to academic leadership by organizing symposiums, FDPs, and conferences, while also mentoring Ph.D. scholars and engineering students. A recipient of multiple IEEE-sponsored grants, she is an active member of several professional bodies such as IEEE, ISTE, and ACM. Her commitment to academic growth, curriculum development, and research funding showcases her dedication to advancing education and technology. Dr. Nalini is a highly deserving candidate for the Best Academic Researcher Award.

Professional Profile 

Education🎓

Dr. M. Nalini has a strong academic foundation in Computer Science and Engineering, marked by consistent academic excellence throughout her educational journey. She earned her Ph.D. in Computer Science and Engineering from St. Peter’s Institute of Higher Education and Research in 2018, where she conducted research on efficient anomaly detection and data redundancy elimination. Prior to that, she completed her M.Tech in Computer Science and Engineering from B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, in 2012 with an impressive CGPA of 9.1, securing the University’s third rank. Her undergraduate studies were completed at V.P.M.M. College for Women, affiliated with Anna University, where she received a B.E. in Computer Science and Engineering in 2010. She also demonstrated academic excellence in her school years, securing 91% in SSLC and 73.42% in HSC. In 2024, she further enriched her academic credentials by completing a Post-Doctoral Fellowship, expanding her research expertise.

Professional Experience📝

Dr. M. Nalini brings over 14 years of diverse professional experience in academia and industry, showcasing a progressive career in teaching, research, and leadership. She began her academic journey as a Lecturer at Sakthi Mariamman Engineering College (2010–2012), followed by roles as Assistant Professor at RVS Padhmavathy College and Sri Nandhanam College of Engineering and Technology, where she contributed to academic excellence and student mentoring. In 2018, she gained valuable industry exposure as a Software Trainee at J.J. Automation Pvt. Ltd., enriching her practical understanding of technology. She then served as Assistant Professor at Saveetha School of Engineering until mid-2022, where she was actively involved in research and faculty development programs. Currently, she is an Associate Professor at S.A. Engineering College, where she leads academic initiatives, mentors Ph.D. scholars, and coordinates national and international academic events. Her well-rounded experience highlights her dedication to both academic advancement and professional excellence.

Research Interest🔎

Dr. M. Nalini’s research interests lie at the intersection of advanced computing technologies and real-world applications, with a strong focus on data mining, machine learning, wireless sensor networks, and network security. Her scholarly work explores intelligent systems capable of detecting anomalies, optimizing data storage, and enhancing communication protocols, particularly in the context of large-scale data environments. She has conducted extensive research on intrusion detection systems, cloud-based healthcare applications, and AI-driven behavioral prediction models, contributing significantly to the fields of cybersecurity and smart computing. Dr. Nalini is also deeply interested in emerging areas such as explainable artificial intelligence (XAI), Internet of Things (IoT), and edge computing. Her projects emphasize both theoretical frameworks and practical implementation, aimed at developing scalable and efficient solutions for complex problems. Through her research, she aims to bridge the gap between academic innovation and industrial application, fostering technological advancement and societal impact.

Award and Honor🏆

Dr. M. Nalini has been widely recognized for her academic excellence and impactful contributions to research and education. She received the prestigious Best Research Award in 2019 from the International Association for Science and Technical Education (IASTE), acknowledging her innovative work in computer science. In 2020, she was honored with the Best Women Faculty Award by the Amaravathi Research Academy’s Faculty Excellence Awards, highlighting her dedication to teaching and mentoring. Most recently, she earned the Academic Excellence Award in 2024 from the Association of Intellectual Professionals (AIP), a testament to her consistent academic performance and leadership in scholarly activities. In addition, she has served as a resource person in ATAL Faculty Development Programs, completed multiple certifications including NPTEL courses, and has received significant funding and sponsorships for technical events and faculty development initiatives from reputed bodies such as IEEE, ACM, and CSI. These accolades reflect her outstanding professional achievements and leadership in academia.

Research Skill🔬

Dr. M. Nalini possesses a robust set of research skills that reflect her deep expertise in computer science and engineering. Her proficiency spans key domains such as data mining, machine learning, artificial intelligence, cloud computing, and network security. She is skilled in developing innovative algorithms for intrusion detection, anomaly detection, and data deduplication, with proven results published in SCI and Scopus-indexed journals. Dr. Nalini is adept at using various programming languages including C, C++, Java, and tools like XML, HTML, and PHP for web-based applications. Her ability to conduct high-quality empirical research, design complex experimental setups, and apply optimization models to real-world challenges demonstrates her analytical depth. She is also experienced in guiding Ph.D., M.Tech, and B.E. students in research projects, helping them translate ideas into tangible outcomes. With strong writing, critical thinking, and technical documentation skills, Dr. Nalini effectively communicates her findings to both academic and professional communities.

Conclusion💡

Dr. M. Nalini possesses the scholarly depth, leadership, technical expertise, and academic service credentials to deserve strong consideration for the Best Academic Researcher Award. Her consistent record of research, publication in reputed journals, mentoring roles, academic event leadership, and recognized contributions to the academic community affirm her excellence in academia.

Publications Top Noted✍️

  1. An efficient cloud‐based healthcare services paradigm for chronic kidney disease prediction application using boosted support vector machine

    • Authors: J. Aswini, B. Yamini, R. Jatothu, K.S. Nayaki, M. Nalini

    • Year: 2022

    • Citations: 57

  2. Characterization of Rubia cordifolia L. root extract and its evaluation of cardioprotective effect in Wistar rat model

    • Authors: B.S. Chandrashekar, S. Prabhakara, T. Mohan, D. Shabeer, B. Bhandare, et al.

    • Year: 2018

    • Citations: 56

  3. Energy-efficient cluster-based routing protocol for WSN based on hybrid BSO–TLBO optimization model

    • Authors: K. Krishnan, B. Yamini, W.M. Alenazy, M. Nalini

    • Year: 2021

    • Citations: 51

  4. A comprehensive survey on Naive Bayes algorithm: Advantages, limitations and applications

    • Authors: P.J.B. Pajila, B.G. Sheena, A. Gayathri, J. Aswini, M. Nalini

    • Year: 2023

    • Citations: 26

  5. Opportunities for improving crop water productivity through genetic enhancement of dryland crops

    • Authors: C.L.L. Gowda, R. Serraj, G. Srinivasan, Y.S. Chauhan, B.V.S. Reddy, K.N. Rai, et al.

    • Year: 2009

    • Citations: 25

  6. Predictive modelling for lung cancer detection using machine learning techniques

    • Authors: B. Yamini, K. Sudha, M. Nalini, G. Kavitha, R.S. Subramanian, R. Sugumar

    • Year: 2023

    • Citations: 22

  7. AI and IoT applications in medical domain enhancing healthcare through technology integration

    • Authors: K. Sudha, C. Ambhika, B. Maheswari, P. Girija, M. Nalini

    • Year: 2023

    • Citations: 19

  8. Energy harvesting and management from ambient RF radiation

    • Authors: M. Nalini, J.V.N. Kumar, R.M. Kumar, M. Vignesh

    • Year: 2017

    • Citations: 18

  9. Accuracy Analysis for Logistic Regression Algorithm and Random Forest Algorithm to Detect Frauds in Mobile Money Transaction

    • Authors: G.M. Kumar, M. Nalini

    • Year: 2021

    • Citations: 11

  10. Anomaly Detection Via Eliminating Data Redundancy and Rectifying Data Error in Uncertain Data Streams

  • Authors: S.A. M. Nalini

  • Year: 2014

  • Citations: 11

Afeez Soladoye | Machine learning | Young Scientist Award

Mr. AfeezSoladoye | Machine learning | Young Scientist Award

Lecturer at Federal university Oye-Ekiti, Nigeria

Soladoye Afeez Adekunle is a promising young scholar in Computer Engineering, currently pursuing his Ph.D. at the Federal University Oye-Ekiti. With a Master’s degree earned with distinction, he has demonstrated strong academic and research capabilities. His work spans machine learning, artificial intelligence, and applied computing, including the development of medical prediction systems and fake news detection using deep learning. In addition to his teaching responsibilities at undergraduate and postgraduate levels, he actively contributes as a peer reviewer for reputable journals such as BMJ Open and serves as a technical editor. His involvement in academic committees and university-level projects reflects his leadership and dedication to institutional development. While his practical projects are impactful, the inclusion of more peer-reviewed publications and measurable research outcomes would further enhance his profile. Overall, his commitment to innovation, education, and research makes him a suitable and competitive candidate for the Young Scientist Award.

Professional Profile

Education🎓

Soladoye Afeez Adekunle has a solid educational background in Computer Engineering, reflecting his dedication to academic excellence and continuous professional development. He is currently pursuing a Ph.D. in Computer Engineering at the Federal University Oye-Ekiti, Nigeria, with a research focus on advanced computing and intelligent systems. He previously earned a Master of Engineering (M.Eng) in Computer Engineering from the same university, graduating with distinction in 2023. His undergraduate studies were completed at Ladoke Akintola University of Technology, Ogbomosho, where he obtained a Bachelor of Technology (B.Tech) degree in Computer Engineering in 2016. His foundational education includes a Senior School Leaving Certificate from Foundation Model College, Ikirun, in 2009, and a Primary School Leaving Certificate from Al-hilal Nursery and Primary School, Ikirun, in 2003. His academic journey reflects a consistent commitment to learning, skill acquisition, and growth in the field of computer science and engineering, preparing him for a successful career in research and education.

Professional Experience📝

Soladoye Afeez Adekunle has amassed valuable professional experience across academia, research, and industry. He currently serves as a Lecturer II in the Department of Computer Engineering at the Federal University Oye-Ekiti, where he teaches both undergraduate and postgraduate courses, supervises student projects, and mentors young researchers. In addition to his teaching role, he is the Assistant Examination Officer and Level Advisor, playing a vital role in exam coordination and academic advising. He also contributes as a Technical Editor for the FUOYE Journal of Engineering and Technology and reviews scholarly articles for esteemed journals like BMJ Open and the Nigerian Journal of Technological Development. As a freelance Machine Learning Engineer, he has developed predictive systems for medical diagnosis and fake news detection, showcasing his ability to apply research in practical contexts. His previous roles include network engineering trainee and peer tutor, reflecting a versatile and well-rounded professional path in computer science and engineering.

Research Interest🔎

Soladoye Afeez Adekunle has earned recognition for his dedication to academic excellence, professional service, and contributions to the field of computer engineering. He graduated with distinction in his Master’s degree in Computer Engineering from the Federal University Oye-Ekiti, a testament to his academic strength and commitment to excellence. He has also been entrusted with key roles within the university, such as Assistant Examination Officer, Level Advisor, and member of several strategic committees, including the Artificial Intelligence Committee and departmental accreditation teams. These roles highlight the trust placed in him by his peers and institutional leadership. Additionally, his active involvement as a reviewer for respected international and national journals such as BMJ Open and the Nigerian Journal of Technological Development reflects recognition of his scholarly competence and critical thinking. Although formal awards are not explicitly listed, his growing responsibilities, editorial roles, and consistent academic performance collectively reflect a strong professional honor and recognition within his academic community.

Award and Honor🏆

Soladoye Afeez Adekunle has earned recognition for his dedication to academic excellence, professional service, and contributions to the field of computer engineering. He graduated with distinction in his Master’s degree in Computer Engineering from the Federal University Oye-Ekiti, a testament to his academic strength and commitment to excellence. He has also been entrusted with key roles within the university, such as Assistant Examination Officer, Level Advisor, and member of several strategic committees, including the Artificial Intelligence Committee and departmental accreditation teams. These roles highlight the trust placed in him by his peers and institutional leadership. Additionally, his active involvement as a reviewer for respected international and national journals such as BMJ Open and the Nigerian Journal of Technological Development reflects recognition of his scholarly competence and critical thinking. Although formal awards are not explicitly listed, his growing responsibilities, editorial roles, and consistent academic performance collectively reflect a strong professional honor and recognition within his academic community.

Research Skill🔬

Soladoye Afeez Adekunle possesses a diverse and practical set of research skills that align with cutting-edge developments in computer engineering and artificial intelligence. His expertise includes data analysis, machine learning model development, deep learning, and natural language processing. He has applied these skills in various impactful projects such as medical prediction systems for cancer and stroke, fake news detection, and object measurement using computer vision techniques. Adept at data preprocessing, model training, performance evaluation, and algorithm optimization, he ensures high-quality and accurate research outcomes. He is also skilled in using tools and frameworks such as Python, TensorFlow, Keras, and MATLAB for simulation and modeling. His experience in peer reviewing academic journals and formatting manuscripts further demonstrates his understanding of scientific writing and research ethics. Soladoye’s ability to merge academic research with practical application, along with his commitment to innovation, positions him as a capable and forward-thinking researcher in the technology domain.

Conclusion💡

Soladoye, Afeez Adekunle presents a strong case for the Young Scientist Award, especially in the areas of emerging technologies, machine learning, and applied computing. His academic excellence, teaching versatility, peer-review contributions, and practical ML project development demonstrate his passion and potential.

Publications Top Noted✍️

  • Title: IMPACT OF SOCIAL MEDIA ON POLICE BRUTALITY AWARENESS IN NIGERIA

    • Authors: OJOA, SOLADOYE Afeez A.

    • Year: 2020

    • Citations: 24

  • Title: Detection of Cervical Cancer Using Deep Transfer Learning

    • Authors: B.A. Omodunbi, A.A. Soladoye, A.O. Esan, N.S. Okomba, T.G.O.O.M. Ojelabi

    • Year: 2024

    • Citations: 4*

  • Title: Optimizing Stroke Prediction Using Gated Recurrent Unit and Feature Selection in Sub-Saharan Africa

    • Authors: A.A. Soladoye, D.B. Olawade, I.A. Adeyanju, O.M. Akpa, N. Aderinto, et al.

    • Year: 2025

    • Citations: 2

  • Title: E-learning: Significance on Federal Unity Schools Students’ in Nigeria Amidst COVID-19 Lockdown

    • Authors: A.A. Soladoye

    • Year: 2020

    • Citations: 2

  • Title: Development of a Medical Condition Prediction Model Using Natural Language Processing with K-Nearest Neighbour

    • Authors: B.A. Omodunbi, A.A. Soladoye, N.S. Okomba, M.O. Ayinla, C.S. Odeyemi

    • Year: [Year not specified]

    • Citations: 2*

  • Title: Smart Hospitality: Leveraging Technological Advances to Enhance Customer Satisfaction

    • Authors: O.O. Osadare, O.N. Akande, A.A. Soladoye, P.O. Sobowale

    • Year: 2024

    • Citations: 1

  • Title: Internet of Things (IoT) Based Remote Surveillance Camera for Supervision of Examinations

    • Authors: C. Segun Odeyemi, B.A. Omodunbi, O.M. Olaniyan, A.A. Soladoye

    • Year: 2024

    • Citations: 1

  • Title: Prediction of Customer Satisfaction in Airline Hospitality Services for Improved Service Delivery Using Support Vector Machine

    • Authors: A.A. Sobowale, O.O. Osadare, A.A. Soladoye, P.O. Sobowale

    • Year: 2024

    • Citations: 1

  • Title: Development of an Interactive Android-Based Ayo-Olopon Game

    • Authors: E.Y. Bolaji Abigail Omodunbi, Afeez Adekunle Soladoye, Opeyemi Asaolu

    • Year: 2023

    • Citations: 1

Hafiz Khan | Machine Learning | Best Researcher Award

Prof. Dr. Hafiz Khan | Machine Learning | Best Researcher Award

Professor at Texas Tech University Health Sciences Center, United States

Dr. Hafiz M. R. Khan is a Full Professor of Biostatistics at Texas Tech University Health Sciences Center, with an extensive academic and research background. He holds a Ph.D. in Statistics from the University of Western Ontario and has postdoctoral training in Bioinformatics. His career spans multiple institutions, including Florida International University and the University of Medicine & Dentistry of New Jersey. Dr. Khan has held leadership roles such as Associate Chair and Director of Outcome Measures, contributing significantly to academic committees and research initiatives. He has published extensively in peer-reviewed journals, focusing on biostatistics, public health, and cognitive impairment research. His strengths for the Best Researcher Award include a strong publication record, leadership in academia, and interdisciplinary collaboration. Areas for improvement may include further engagement in international research projects. Overall, his contributions to biostatistics and public health research make him a strong candidate for the Best Researcher Award.

Professional Profile 

Education

Dr. Hafiz M. R. Khan has a strong educational background in statistics and biostatistics. He earned his Ph.D. in Statistics from the University of Western Ontario, Canada, where he specialized in statistical methodologies and their applications in health sciences. To further enhance his expertise, he completed postdoctoral training in Bioinformatics, gaining advanced knowledge in computational biology and data analysis. His academic journey also includes a Master’s and Bachelor’s degree in Statistics, which provided him with a solid foundation in quantitative analysis and research methods. Throughout his education, Dr. Khan focused on interdisciplinary applications of statistics, particularly in public health, epidemiology, and biomedical sciences. His strong academic credentials have enabled him to contribute significantly to research, teaching, and mentoring students in biostatistics and public health. His education has played a pivotal role in shaping his career, allowing him to bridge the gap between statistical theory and real-world health applications.

Professional Experience

Dr. Hafiz M. R. Khan has an extensive professional background in statistics, biostatistics, and public health research. He has held various academic and research positions, contributing significantly to statistical methodologies in biomedical and epidemiological studies. As a professor and researcher, he has taught biostatistics, data analysis, and public health courses at reputable institutions, mentoring numerous students and professionals. His expertise extends to consulting for healthcare organizations and research institutions, where he applies statistical models to solve complex health-related problems. Dr. Khan has also collaborated on interdisciplinary projects involving bioinformatics, machine learning, and predictive analytics in healthcare. His professional journey includes publishing high-impact research papers, serving as a peer reviewer for scientific journals, and participating in international conferences. His work has been instrumental in advancing statistical applications in medicine and public health, bridging the gap between theoretical research and practical implementation in real-world health challenges.

Research Interest

Dr. Hafiz M. R. Khan’s research interests lie at the intersection of biostatistics, epidemiology, and public health, with a strong focus on statistical modeling, predictive analytics, and machine learning applications in healthcare. He is particularly interested in developing advanced statistical methodologies to analyze complex biomedical data, improve disease prediction models, and enhance public health decision-making. His work explores the integration of statistical techniques with bioinformatics to study genetic influences on diseases and health outcomes. Additionally, he investigates the application of artificial intelligence in medical research, aiming to optimize diagnostic accuracy and treatment effectiveness. Dr. Khan is also passionate about global health issues, including infectious disease surveillance, health disparities, and aging populations. Through interdisciplinary collaborations, he strives to bridge the gap between statistical theory and real-world healthcare applications, contributing to innovative solutions that enhance patient care, policy-making, and public health interventions worldwide.

Award and Honor

Dr. Hafiz M. R. Khan has received numerous awards and honors in recognition of his outstanding contributions to biostatistics, public health, and epidemiology. He has been honored with prestigious research grants and fellowships from esteemed institutions, highlighting his excellence in statistical modeling and healthcare analytics. His groundbreaking work has earned him accolades such as the Best Researcher Award and Excellence in Public Health Research recognition. Dr. Khan has been invited as a keynote speaker at international conferences and has received distinguished scholar awards for his impactful publications. His dedication to academic excellence has also been acknowledged through teaching awards, mentoring recognitions, and leadership roles in professional organizations. Additionally, he has been recognized for his contributions to global health initiatives, demonstrating his commitment to improving healthcare outcomes. These awards and honors underscore his influence in the field and his continuous efforts to advance research, education, and policy in health sciences.

Research Skill

Dr. Hafiz M. R. Khan possesses exceptional research skills in biostatistics, public health, and epidemiology, enabling him to conduct advanced statistical analyses and develop innovative models for healthcare studies. His expertise includes data analysis, predictive modeling, machine learning applications in health research, and designing population-based studies. He has a strong command of statistical software such as R, SPSS, SAS, and STATA, which he utilizes to interpret complex datasets effectively. Dr. Khan excels in systematic reviews, meta-analysis, and quantitative research methodologies, ensuring rigorous scientific inquiry and evidence-based conclusions. His ability to synthesize large datasets and extract meaningful insights has contributed significantly to policy recommendations and healthcare improvements. Additionally, his collaborative approach to interdisciplinary research allows him to work seamlessly with experts from diverse fields. His critical thinking, problem-solving abilities, and meticulous research design skills make him a valuable contributor to advancing public health, epidemiology, and statistical sciences.

Conclusion

Dr. Hafiz M. R. Khan is a highly qualified candidate for the Best Researcher Award due to his extensive contributions to academia, research, and public health. His leadership roles, mentoring, and commitment to advancing Biostatistics make him a strong contender. However, enhancing visibility of research impact, citations, international collaborations, and applied innovations could further strengthen his application.

Publications Top Noted

  • Title: Metabolic syndrome in aboriginal Canadians: prevalence and genetic associations
    Authors: RL Pollex, AJG Hanley, B Zinman, SB Harris, HMR Khan, RA Hegele
    Year: 2006
    Citations: 145

  • Title: Differences between carotid wall morphological phenotypes measured by ultrasound in one, two and three dimensions
    Authors: K Al-Shali, AA House, AJG Hanley, HMR Khan, SB Harris, …
    Year: 2005
    Citations: 142

  • Title: Genetic Variation in PPARG Encoding Peroxisome Proliferator-Activated Receptor γ Associated With Carotid Atherosclerosis
    Authors: KZ Al-Shali, AA House, AJG Hanley, HMR Khan, SB Harris, B Zinman, …
    Year: 2004
    Citations: 123

  • Title: Guillain–Barré syndrome after Gardasil vaccination: data from vaccine adverse event reporting system 2006–2009
    Authors: N Souayah, PA Michas-Martin, A Nasar, N Krivitskaya, HA Yacoub, …
    Year: 2011
    Citations: 120

  • Title: Type 2 diabetes and its correlates among adults in Bangladesh: a population-based study
    Authors: MAB Chowdhury, MJ Uddin, HMR Khan, MR Haque
    Year: 2015
    Citations: 110

  • Title: Physical therapists’ attitudes, knowledge, and practice approaches regarding people who are obese
    Authors: S Sack, DR Radler, KK Mairella, R Touger-Decker, H Khan
    Year: 2009
    Citations: 78

  • Title: Trends in outcomes and hospitalization costs for traumatic brain injury in adult patients in the United States
    Authors: K Farhad, HMR Khan, AB Ji, HA Yacoub, AI Qureshi, N Souayah
    Year: 2013
    Citations: 56

  • Title: Predictive inference from a two-parameter Rayleigh life model given a doubly censored sample
    Authors: HMR Khan, SB Provost, A Singh
    Year: 2010
    Citations: 49

  • Title: Optimizing RNA extraction yield from whole blood for microarray gene expression analysis
    Authors: J Wang, JF Robinson, HMR Khan, DE Carter, J McKinney, BA Miskie, …
    Year: 2004
    Citations: 48

  • Title: Secondhand smoke exposure reduction intervention in Chinese households of young children: a randomized controlled trial
    Authors: AS Abdullah, F Hua, H Khan, X Xia, Q Bing, K Tarang, JP Winickoff
    Year: 2015
    Citations: 45

  • Title: Statistical machine learning approaches to liver disease prediction
    Authors: F Mostafa, E Hasan, M Williamson, H Khan
    Year: 2021
    Citations: 40

  • Title: The safety profile of home infusion of intravenous immunoglobulin in patients with neuroimmunologic disorders
    Authors: N Souayah, A Hasan, HMR Khan, HA Yacoub, M Jafri
    Year: 2011
    Citations: 34

  • Title: Tumor-infiltrating lymphocytes (TILs) as a biomarker of abscopal effect of cryoablation in breast cancer: A pilot study
    Authors: SY Khan, MW Melkus, F Rasha, M Castro, V Chu, L Brandi, H Khan, …
    Year: 2022
    Citations: 31

  • Title: Vulnerability prioritization, root cause analysis, and mitigation of secure data analytic framework implemented with MongoDB on Singularity Linux containers
    Authors: AM Dissanayaka, S Mengel, L Gittner, H Khan
    Year: 2020
    Citations: 31

  • Title: Colorectal cancer screening use among insured adults: Is out-of-pocket cost a barrier to routine screening?
    Authors: A Perisetti, H Khan, NE George, R Yendala, A Rafiq, S Blakely, …
    Year: 2018
    Citations: 31