Nikolai Kargin | Semiconductor Materials | Best Researcher Award

Prof. Dr. Nikolai Kargin | Semiconductor Materials | Best Researcher Award

Rector Office Counselor, Professor | National Research Nuclear University MEPhI | Russia

Nikolai I. Kargin is a distinguished researcher with extensive expertise in electronic processes in microwave devices, quantum-well heterostructures, and high-heterostructure device development. His scientific contributions encompass the physics and technology of quantum-well heterostructures, micro- and nanotechnology for short-channel microwave devices, and the design, calculation, and simulation of heterostructure unipolar and bipolar microwave devices operating at frequencies up to 250 GHz and beyond. Kargin has played a pivotal role in advancing heterostructure monolithic microwave integrated circuits (MMICs) and devices for broadband wireless communication systems, fiber-optic networks, airborne radars, and high-sensitivity radiometers, as well as energy-efficient devices based on wide-gap materials. With over 230 publications—including a monograph, 230 articles and abstracts, 15 scientific and methodological works, and nine patents—Kargin’s research has had significant impact across academia and industry. His work is characterized by interdisciplinary collaboration, bringing together teams in electronics, spintronics, photonics, and nanotechnology, and fostering innovations that address both fundamental scientific challenges and applied technological needs. He has contributed to numerous high-impact projects that enhance communication technologies, radar systems, and energy-efficient electronic devices, reflecting a strong societal and technological influence. Throughout his career, Kargin has held leadership roles such as Vice-Rector of the National Research Nuclear University MEPhI, Director of the Institute of Nanotechnologies in Electronics, Spintronics and Photonics, and head of advanced research departments, emphasizing his ability to guide research initiatives and mentor scientific teams. His work exemplifies excellence in integrating theoretical insights with practical device engineering, establishing him as a globally recognized authority in microwave electronics and heterostructure technologies.

Profile: Scopus 

Featured Publications

  1. Kargin, N. I., et al. (2025). Evidence of isospin-symmetry violation in high-energy collisions of atomic nuclei. Nature Communications.

  2. Kargin, N. I., et al. (2025). Iridescence and luminescence from opal matrices for show business. Photonics.

  3. Kargin, N. I., et al. (2025). Raman spectroscopy of multilayer graphene structures with various twist angles between layers. Journal of Applied Spectroscopy.

  4. Kargin, N. I., et al. (2025). Development of a correlator for measuring the second-order autocorrelation function of single photon sources. Russian Microelectronics.

  5. Kargin, N. I., et al. (2025). Single NV centers in diamond produced by multipulse femtosecond laser irradiation. Diamond and Related Materials.


Kargin’s research bridges fundamental physics and advanced device engineering, driving innovation in quantum technologies, high-frequency electronics, and nanomaterials. His work contributes to scientific knowledge, industrial applications in communication and sensing systems, and global advancements in photonics and nuclear research.

Jiapeng Luo | Advanced Materials | Best Researcher Award

Dr. Jiapeng Luo | Advanced Materials | Best Researcher Award

Senior Engineer | Harbin Institute of Technology| China

Dr. Jiapeng Luo is a distinguished senior engineer and adjunct professor recognized for his cross-disciplinary expertise in new materials, additive manufacturing, and graphene-based composites. He earned his Ph.D. from the Harbin Institute of Technology and completed postdoctoral research at the Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. With over seven years of experience in scientific research, industrial innovation, and project leadership, he has successfully managed multiple military-civil fusion and industry-academia collaboration projects exceeding ¥8 million in value. His research primarily focuses on graphene-aluminum composites, 3D-printed titanium alloys, biomedical materials, surface modification, and numerical simulation. Dr. Luo’s innovative work in high-conductivity graphene-aluminum composites has significantly enhanced material performance in high-temperature and electrical applications, while his development of ultra-low modulus porous beta-Ti alloys has advanced customized biomedical implant technology. He has published over 11 SCI-indexed papers in Q1 and Q2 journals, holds 14 patents, and maintains a cumulative SCI impact factor exceeding 50. His research collaborations span leading institutions such as Harbin Institute of Technology, Southern University of Science and Technology, and the Chinese Academy of Sciences. In addition to academic excellence, Dr. Luo has contributed extensively to scientific policy development, startup incubation, and mentorship, guiding numerous postgraduate students toward successful careers in top technology firms. His professional affiliations include leadership roles within the China Zhi Gong Party and the Guangming Overseas Returnees Association. Dr. Luo has been honored with multiple recognitions for his contributions to engineering innovation and technology transfer, reflecting his exceptional ability to bridge scientific research with industrial application. His sustained commitment to excellence, innovation, and societal impact underscores his role as a transformative figure in advanced materials engineering and applied research.

Profile: Scopus

Featured Publication

Luo, J., et al. (2023). Electropolishing influence on biocompatibility of additively manufactured Ti-Nb-Ta-Zr: in vivo and in vitro. Journal of Materials Science: Materials in Medicine. Citations: 5

Pengyun Xu | Surface Engineering | Best Researcher Award

Assoc. Prof. Dr. Pengyun Xu | Surface Engineering | Best Researcher Award

Associate Professor | Ocean University of China | China

Assoc. Prof. Dr. Pengyun Xu is an accomplished researcher and academic leader in the field of thermal spray technologies, functional coatings, and micro/nanostructured surfaces, currently serving as an Associate Professor at the College of Engineering, Ocean University of China. He obtained his Ph.D. in Mechanical and Industrial Engineering from the University of Toronto, Canada, in 2019, under the mentorship of the renowned Prof. Javad Mostaghimi, focusing on the deposition of superhydrophobic rare earth oxide coatings via solution precursor plasma spray processes. Dr. Xu previously worked as a Postdoctoral Fellow at the University of Toronto (2019–2021), where he investigated columnar-structured thermal barrier coatings, pseudocapacitor electrodes, and graphene synthesis. His current research centers on liquid feedstock plasma spray processes, underwater drag-reduction coatings, superhydrophobic and thermal barrier coatings, and the modeling of micro/nanoscale behaviors in plasma jets, integrating experimental and computational approaches. Dr. Xu’s research skills span materials synthesis, advanced plasma spray technologies, surface morphology control, and functional property characterization, complemented by strong expertise in cross-disciplinary project management. He has published extensively, with over 15 first- or corresponding-author papers in high-impact journals such as Journal of Advanced Ceramics, Surface & Coatings Technology, and Journal of Colloid and Interface Science, and has authored a book chapter with Elsevier. Dr. Xu has led several national and provincial-level research projects and collaborated internationally through NSERC-funded programs in Canada. He serves as a guest editor, editorial board member, and best paper award judge for international conferences and journals. His awards and honors include multiple grants from the Shandong Provincial Natural Science Foundation and the China Postdoctoral Science Foundation, reflecting his innovative contributions to advanced coating technologies. In conclusion, Dr. Xu exemplifies scientific excellence, leadership, and innovation in materials engineering, with his research advancing sustainable surface technologies and his growing influence promising significant international impact in the field of functional coatings and surface science. 895 Citations | 33 Documents | 15 h-index .

Profiles: Google Scholar | Scopus | ORCID | ResearchGate

Featured Publications

  1. Wei, Z. Y., Meng, G. H., Chen, L., Li, G. R., Liu, M. J., Zhang, W. X., Zhao, L. N., Zhang, Q., Xu, P., … (2022). Progress in ceramic materials and structure design toward advanced thermal barrier coatings. Journal of Advanced Ceramics, 11(7), 985–1068. Cited by: 335

  2. Xu, P., Coyle, T. W., Pershin, L., & Mostaghimi, J. (2018). Superhydrophobic ceramic coating: Fabrication by solution precursor plasma spray and investigation of wetting behavior. Journal of Colloid and Interface Science, 523, 35–44. Cited by: 70

  3. Meng, G. H., Liu, H., Xu, P. Y., Li, G. R., Xu, T., Yang, G. J., & Li, C. J. (2020). Superior oxidation resistant MCrAlY bond coats prepared by controlled atmosphere heat treatment. Corrosion Science, 170, 108653. Cited by: 69

  4. Xu, P., Coyle, T. W., Pershin, L., & Mostaghimi, J. (2018). Fabrication of micro-/nano-structured superhydrophobic ceramic coating with reversible wettability via a novel solution precursor vacuum plasma spray process. Materials & Design, 160, 974–984. Cited by: 53

  5. Yi, P., Zhan, X., He, Q., Liu, Y., Xu, P., Xiao, P., & Jia, D. (2019). Influence of laser parameters on graphite morphology in the bonding zone and process optimization in gray cast iron laser cladding. Optics & Laser Technology, 109, 480–487. Cited by: 51

Abdelhamid El kaaouachi | Materials Science | Future Frontier Science Award

Prof. Abdelhamid El kaaouachi | Materials Science | Future Frontier Science Award

University Ibn Zohr of Agadir, Faculty of Sciences, Morocco

Abdelhamid El Kaaouachi is a highly experienced professor and researcher specializing in condensed matter physics, particularly in electrical transport phenomena in semiconductors and 2D systems. With over 30 years in academia, he has made significant contributions to areas such as materials science, nanotechnology, optoelectronics, superconductivity, and photonics. He has authored more than 125 papers and book chapters and participated in over 176 international conferences. El Kaaouachi has also held several leadership positions, including head of the Department of Computing Systems and co-head of the Laboratory of Physics of Condensed Matter at Ibn Zohr University, Morocco. He has received multiple prestigious grants, including Fulbright grants for research exchanges in the USA. His research focus includes solar cells, nanotechnology, and scientific programming, with a strong emphasis on experimental and theoretical analysis. El Kaaouachi’s extensive teaching experience spans various advanced topics in physics, electronics, and computer science.

Professional Profile 

Education🎓

Abdelhamid El Kaaouachi’s educational background is extensive, with advanced degrees in physics and engineering. He earned his Doctorate of State in Condensed Matter (Semiconductors) from Ibn Zohr University in Morocco, in collaboration with the University of Sciences and Technologies of Lille I, France, where his thesis focused on scale theory applied to metal-insulator transitions in n-type InP semiconductors. He also holds a Master’s degree in Industrial Engineering Computing from the University of Lille I, France, where he developed software interfaces for laser printing. El Kaaouachi completed his first PhD in Condensed Matter at the University of Lille I, focusing on conduction mechanisms in semiconductors at low temperatures and high magnetic fields. Additionally, he obtained a Master’s degree in Physics with a project on Hall effect studies in semiconductors. His academic journey has been marked by excellence, with scholarships and research grants from prestigious institutions like the French Ministry of Higher Education.

Professional Experience📝

Abdelhamid El Kaaouachi has over 30 years of professional experience as a professor and researcher. Since 1994, he has been a professor at the Faculty of Sciences Ibn Zohr in Agadir, Morocco, where he has held multiple key roles, including Head of the Department of Computing Systems and co-head of the Laboratory of Physics of Condensed Matter. He has also supervised 15 thesis projects and been a member of numerous academic juries. Additionally, El Kaaouachi has contributed to the faculty’s administrative and technical operations, including serving as a network administrator. His research career includes significant international exposure, with roles as a visiting researcher in the U.S. at Kansas State University and the University of New Mexico, where he worked on advanced topics such as attosecond time-resolved photoelectron emission and superconducting layers. His work spans condensed matter physics, semiconductor technologies, optoelectronics, and nanotechnology, cementing his global reputation in these fields.

Research Interest🔎

Abdelhamid El Kaaouachi’s research interests primarily lie in condensed matter physics, with a focus on electrical transport phenomena in semiconductors and 2D systems. His work explores topics such as thin films, superlattices, and the mechanisms behind the metal-insulator transition. He has a strong foundation in solid-state physics, particularly in the areas of optoelectronics, photonics, and superconductivity. Additionally, El Kaaouachi is deeply involved in nanotechnology, studying the electrical and structural properties of nanomaterials, with particular emphasis on semiconductors like InP and GaAs. His research also extends to scientific programming, enabling theoretical simulations and experimental measurements in various materials systems. Over the years, he has made significant contributions to the understanding of magnetoresistance, electron localization, and the behavior of semiconductor materials under extreme conditions such as low temperatures and high magnetic fields. El Kaaouachi’s interdisciplinary approach bridges various fields, contributing to advancements in both theoretical and applied physics.

Award and Honor🏆

Abdelhamid El Kaaouachi has received several prestigious awards and honors throughout his career, reflecting his outstanding contributions to the field of condensed matter physics and semiconductor research. In recognition of his academic excellence, he was awarded an Excellence Scholarship by the French Ministry of Higher Education and Research from 1987 to 1994. His dedication to scientific research earned him the Scientific Research Award (Science and Technology) from Ibn Zohr University of Agadir in 2011-2012. Additionally, El Kaaouachi’s collaboration with international institutions has been recognized through multiple Fulbright Grants. He received a Fulbright grant for research exchange in 2016 at Kansas State University and again in 2023 at the University of New Mexico, where he conducted pioneering work in the fields of ultrafast lasers and superconductivity. These honors reflect his continued influence in the scientific community and his commitment to advancing knowledge in his specialized fields of research.

Research Skill🔬

Abdelhamid El Kaaouachi possesses a diverse and extensive skill set in various research domains, particularly in condensed matter physics, semiconductor physics, and nanotechnology. His expertise includes studying electrical transport phenomena in semiconductors and 2D systems, with a focus on thin films and superlattices. El Kaaouachi is highly skilled in experimental measurements, especially in low-temperature conductivity and magnetoresistance studies, as well as in the application of scale theory to understand metal-insulator transitions. His proficiency extends to the theoretical and computational aspects of solid-state physics, including electronic-structure calculations and scientific programming. He has also demonstrated advanced capabilities in modeling ultrafast laser interactions with solid surfaces and nanoparticles, employing techniques such as DFT and TDDFT. Furthermore, his work involves the application of photonics, optoelectronics, and superconductivity, areas in which he has contributed through both experimental and theoretical research. His interdisciplinary approach and advanced computational skills are pivotal to his research success.

Conclusion💡

Abdelhamid El Kaaouachi is undoubtedly a strong candidate for the Future Frontier Science Award. His extensive research background, leadership roles, and contributions to the field of condensed matter physics and optoelectronics position him as an exceptional nominee. To maximize his potential for future advancements, a focus on interdisciplinary collaboration, expanding technological expertise, and improving English proficiency would be beneficial. Overall, his work aligns well with the innovative spirit of the Future Frontier Science Award, and with continued growth in these areas, he is poised to make even greater contributions to scientific progress.

Publications Top Noted✍️

  • Essakali, Y., Dlimi, S., Elmourabit, F., El Kaaouachi, A., & Limouny, L. (2025).
    Title: Electronic transport across the metal–insulator transition in 2D p-Si/SiGe/Si systems: insights from variable range hopping to weak localization

  • Mounir, E.H., Mabchour, H., Ait Hammou, B.A., Dlimi, S., & El Kaaouachi, A. (2024).
    Title: Magnetoconductivity behaviour due to electron–electron interactions, weak localization and Zeeman effects in 2-D-layered WS₂
    Citations: 2

  • Elmourabit, F., Dlimi, S., El Moutaouakil, A., Elkhatat, H., & El Kaaouachi, A. (2023).
    Title: Nature of the Metal Insulator Transition in High-Mobility 2D_Si-MOSFETs
    Citations: 7

  • Dlimi, S., Elmourabit, F., Id Ouissaaden, F., Baghaz, E., & El Kaaouachi, A. (2023).
    Title: Analysis of thermoelectric effect of wet spun graphene fiber composites
    Citations: 3

  • Dlimi, S., El Kaaouachi, A., Limouny, L., & Narjis, A. (2022).
    Title: Percolation Induced Metal–Insulator Transition in 2D Si/SiGe Quantum Wells
    Citations: 6

  • El Hassan, M., Dlimi, S., Limouny, L., Echchelh, A., & El Kaaouachi, A. (2022).
    Title: Electrical transport phenomenon and variable range hopping conduction in reduced graphene oxide/polystyrene composites
    Citations: 5

  • El Oujdi, A., Ennajih, D., El Kaaouachi, A., Echchelh, A., & Dlimi, S. (2022).
    Title: Positive magnetoconductivity and inelastic scattering time at low temperatures with magnetic field in InSb semiconductor
    Citations: 2

  • Ennajih, D., El Kaaouachi, A., Echchelh, A., Ait Hammou, B., & Dlimi, S. (2022).
    Title: Study of electrical conductivity in metallic n-type InP semiconductor at low temperature in presence of strong magnetic field

  • Limouny, L., Dlimi, S., & El Kaaouachi, A. (2021).
    Title: Negative magnetoresistance in Dirac semimetal Cd₃As₂ in the variable range hopping regime
    Citations: 4

Benjun Cheng | Materials Science | Best Researcher Award

Prof. Benjun Cheng | Materials Science | Best Researcher Award

Prof. at Central South University, China

Professor Benjun Cheng is a highly accomplished researcher specializing in nanomaterials, high-temperature ceramics, energy-saving materials, and numerical simulation. With over 60 research papers and 10+ national invention patents, he has significantly contributed to academia and industry. As a doctoral supervisor and reviewer for prestigious journals, he plays a vital role in shaping research in materials science. His leadership in national projects, including the National Key R&D Program and National Natural Science Foundation projects, highlights his expertise. International exposure as a visiting scholar at the University of Exeter further strengthens his profile. While he has made outstanding contributions, expanding global collaborations, publishing in high-impact journals, and leading large-scale interdisciplinary projects would enhance his global recognition. Overall, his research excellence, innovation, and leadership make him a highly suitable candidate for the Best Researcher Award, with minor improvements needed to elevate his international influence further.

Professional Profile 

Education

Professor Benjun Cheng holds a Ph.D. in Materials Science and Engineering from Zhejiang University (2002-2006), where he developed expertise in nanomaterials, high-temperature ceramics, and energy-saving materials. His academic journey has been marked by a strong foundation in both theoretical and applied research, enabling him to contribute significantly to materials science and energy applications. Since 2007, he has been a faculty member at the School of Energy Science and Engineering at Central South University, where he progressed from lecturer to a doctoral supervisor. In 2014, he was awarded a prestigious National Scholarship Fund to serve as a visiting scholar at the University of Exeter, UK, further enhancing his international research exposure. His extensive education and continuous academic growth have equipped him with the skills and knowledge to lead high-impact research projects and mentor future researchers in the field of materials science and engineering.

Professional Experience

Professor Benjun Cheng has extensive professional experience in materials science and engineering, specializing in nanomaterials, high-temperature ceramics, energy-saving materials, and numerical simulation. Since 2007, he has been a faculty member at the School of Energy Science and Engineering, Central South University, where he has advanced from lecturer to doctoral supervisor. His research contributions include leading and participating in major national projects, such as the National Key R&D Program and National Natural Science Foundation projects. He has authored over 60 research papers and holds more than 10 national invention patents, demonstrating his impact in academia and industry. As a reviewer for prestigious journals and a technical consultant for manufacturing enterprises, he plays a crucial role in advancing research and industrial applications. In 2014, he enhanced his global academic profile as a visiting scholar at the University of Exeter, UK. His expertise and leadership make him a distinguished researcher in his field.

Research Interest

Professor Benjun Cheng’s research interests focus on advanced materials science, particularly in nanomaterials, high-temperature ceramics, energy-saving and energy storage materials, and numerical simulation of materials and equipment. His work explores the application of new energy in high-temperature furnaces, emphasizing its impact on the sintering of refractory materials and ceramics. He is also deeply involved in developing innovative energy-efficient solutions for industrial applications, contributing to sustainable advancements in material processing. His research extends to the practical implementation of novel materials in manufacturing, optimizing performance through computational modeling and experimental validation. By integrating theoretical analysis with industrial applications, he aims to enhance the efficiency and durability of materials used in extreme environments. His expertise in these areas has led to significant contributions in both academic research and industry, reinforcing his role as a leader in materials science and engineering.

Award and Honor

Professor Benjun Cheng has received numerous awards and honors in recognition of his outstanding contributions to materials science and engineering. His research excellence in nanomaterials, high-temperature ceramics, and energy-saving materials has been acknowledged through prestigious national grants and funding, including participation in the National Key R&D Program and the National Natural Science Foundation projects. In 2014, he was awarded a National Scholarship Fund to serve as a visiting scholar at the University of Exeter, UK, highlighting his international academic impact. His innovative contributions, including over 10 national invention patents, have earned recognition from both academia and industry. Additionally, his role as a reviewer for leading scientific journals and as a technical consultant for manufacturing enterprises further reflects his influence in the field. His dedication to scientific research and technological innovation has positioned him as a highly respected figure in materials science, making him a deserving candidate for prestigious awards.

Research Skill

Professor Benjun Cheng possesses advanced research skills in materials science, specializing in nanomaterials, high-temperature ceramics, energy-saving materials, and numerical simulation. His expertise includes experimental design, materials characterization, and computational modeling to optimize material properties for industrial applications. With a strong analytical mindset, he integrates theoretical research with practical implementation, ensuring the development of high-performance materials for extreme environments. His ability to lead and manage national research projects, including those funded by the National Key R&D Program and the National Natural Science Foundation, demonstrates his project management and problem-solving skills. Additionally, his extensive publication record, with over 60 research papers and 10+ national invention patents, highlights his proficiency in scientific writing, data analysis, and innovation. As a reviewer for prestigious journals and a technical consultant for manufacturing enterprises, he continuously applies his research skills to advance both academic knowledge and industrial development.

Conclusion

Professor Benjun Cheng is a strong candidate for the Best Researcher Award, given his exceptional contributions to materials science, energy applications, and high-temperature ceramics. His strong publication record, patents, leadership in national projects, and academic influence make him a standout researcher. Strengthening global collaborations, publishing in high-impact journals, and leading larger-scale research initiatives would further solidify his candidacy for prestigious awards in the future.

Publications Top Noted

  • Title: Thermal, Flow and Inclusions Analysis of Clogging Mechanism in Continuous Casting Process

    • Authors: Xiaocheng Liang, Lin Wang, Zhongfei Liu, Qichen Yuan, Benjun Cheng

    • Year: 2025

    • Citations: 0

  • Title: Numerical Simulation of the Heating Process in a Vacuum Sintering Electric Furnace and Structural Optimization

    • Authors: Mao Li, Jishun Huang, Ting Hu, Benjun Cheng, Hesong Li

    • Year: 2024

Jihao Li | Materials Science | Best Researcher Award

Dr. Jihao Li | Materials Science | Best Researcher Award

Associate Researcher at Shanghai Institute of Applied Physics, Chinese Academy of Sciences, China

Dr. Jihao Li is an Associate Researcher at the Shanghai Institute of Applied Physics, Chinese Academy of Sciences, specializing in radiation chemistry and irradiation technology for material modification. He earned his Ph.D. from the University of Chinese Academy of Sciences in 2014 and has since led groundbreaking research in environmental applications, including solar-driven desalination and wastewater treatment. With over 60 SCI-indexed publications, 1,900 citations, and 12 Chinese invention patents, his work has made significant scientific and practical contributions. He serves as a guest editor for Gels, a reviewer for Advanced Materials and Materials Letters, and is actively involved in professional committees. Recognized with multiple awards, he has delivered invited talks at international conferences. His expertise and leadership in innovative material applications position him as a strong contender for the Best Researcher Award, with potential for further impact through enhanced industry collaborations and expanded research outreach.

Professional Profile 

Education

Dr. Jihao Li earned his Ph.D. from the University of Chinese Academy of Sciences in 2014, specializing in radiation chemistry and material modification. His academic journey provided him with a strong foundation in applied physics and chemical engineering, equipping him with expertise in advanced irradiation technologies. Throughout his education, he focused on the intersection of chemistry and material science, leading to significant contributions in environmental remediation and nanomaterial applications. His doctoral research laid the groundwork for his current studies in solar-driven desalination, photocatalysis, and radiation-induced material modifications. Since completing his Ph.D., he has continued to expand his knowledge through interdisciplinary collaborations and professional development. His educational background, combined with extensive research experience, has positioned him as a leading expert in his field, contributing to numerous high-impact scientific publications, patents, and innovations that address critical global challenges such as water purification and environmental sustainability.

Professional Experience

Dr. Jihao Li has been an Associate Researcher at the Shanghai Institute of Applied Physics, Chinese Academy of Sciences, since 2014, where he leads the Radiation Chemistry and Applications group. With over a decade of professional experience, he has focused on the application of radiation chemistry and irradiation technology in material preparation and modification. His research has resulted in over 60 SCI-indexed publications, 12 Chinese invention patents, and numerous international collaborations. He serves as a guest editor for Gels and a reviewer for Advanced Materials and Materials Letters, highlighting his influence in the scientific community. Additionally, he is a council member of the China Nuclear Society’s Radiation Research and Application Branch and an active contributor to national standards for insulation materials. His expertise in photothermal desalination and wastewater treatment has led to significant advancements in environmental sustainability, making him a recognized leader in his field.

Research Interest

Dr. Jihao Li’s research interests lie at the intersection of radiation chemistry, material science, and environmental sustainability. His work primarily focuses on the application of irradiation technology for material preparation and modification, with a particular emphasis on developing innovative solutions for water purification and desalination. He explores solar-driven evaporation systems, photothermal catalysis, and nanomaterial-based wastewater treatment to address global water scarcity and pollution challenges. His recent research integrates reduced graphene oxide (rGO) and Ti₃C₂ MXene-based hydrogels to enhance solar evaporation efficiency and degrade organic pollutants. Additionally, he investigates radiation-induced structural modifications in polymers and composites for advanced industrial applications. His expertise extends to thermal shrinkage materials, nuclear radiation shielding, and functional coatings, demonstrating his commitment to both fundamental and applied research. Through interdisciplinary collaboration and technological innovation, Dr. Li aims to develop sustainable materials that contribute to environmental protection and resource management.

Award and Honor

Dr. Jihao Li has received multiple awards and honors in recognition of his significant contributions to radiation chemistry, material science, and environmental research. His innovative work in solar-driven desalination, photocatalysis, and wastewater treatment has earned him two prestigious research awards, highlighting his impact in both academic and applied fields. As an invited speaker at 10 international conferences, he has shared his expertise on radiation-induced material modification and sustainable water purification technologies. Additionally, his role as a council member of the China Nuclear Society’s Radiation Research and Application Branch and a committee member for national insulation materials standards underscores his leadership in scientific research and policy development. His editorial appointments in renowned journals such as Gels, along with his role as a reviewer for Advanced Materials and Materials Letters, further validate his standing as a respected scientist. His growing recognition showcases his influence in the global scientific community.

Research Skill

Dr. Jihao Li possesses strong research skills in radiation chemistry, material science, and environmental applications, with expertise in developing irradiation-based material modifications for practical use. His proficiency in nanomaterial synthesis, photothermal catalysis, and polymer engineering enables him to create advanced functional materials for water purification, desalination, and pollutant degradation. He is skilled in radiation-induced structural modifications, which he applies to enhance material properties for industrial and environmental applications. His analytical skills include spectroscopic analysis, electron microscopy, and thermal characterization techniques, allowing him to investigate material behaviors at the molecular level. Additionally, he excels in experimental design, project management, and interdisciplinary collaboration, contributing to the success of numerous research projects. With over 60 SCI publications, 12 patents, and extensive peer-review experience, Dr. Li demonstrates a high level of scientific rigor, innovation, and problem-solving ability, making him a leading researcher in applied chemistry and material science.

Conclusion

Dr. Jihao Li has strong research credentials, significant scientific contributions, and practical innovations in applied chemistry and environmental science. His work in solar-driven desalination and wastewater treatment is impactful. While there are areas for further development in industry collaborations and book publications, his achievements make him a highly suitable candidate for the Best Researcher Award.

Publications Top Noted

  • Ion sieving in graphene oxide membranes via cationic control of interlayer spacing

    • Year: 2017
    • Citations: 1,568
  • Salt‐induced fabrication of superhydrophilic and underwater superoleophobic PAA‐g‐PVDF membranes for effective separation of oil‐in‐water emulsions

    • Year: 2014
    • Citations: 765
  • Measurements of Higgs boson properties in the diphoton decay channel with pp collision data at with the ATLAS detector

    • Year: 2018
    • Citations: 605
  • Search for new phenomena in dijet events using pp collision data collected at with the ATLAS detector

    • Year: 2017
    • Citations: 524
  • Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids

    • Year: 2014
    • Citations: 459
  • Volume I. Introduction to DUNE

    • Year: 2020
    • Citations: 452
  • Measurement of the Ratio of Branching Fractions B (B c+→ J/ψ τ+ ν τ)/B (B c+→ J/ψ μ+ ν μ)

    • Year: 2018
    • Citations: 397
  • A robust polyionized hydrogel with an unprecedented underwater anti‐crude‐oil‐adhesion property

    • Year: 2016
    • Citations: 385
  • Laundering durability of superhydrophobic cotton fabric

    • Year: 2010
    • Citations: 351
  • Layer‐by‐Layer Construction of Cu²⁺/Alginate Multilayer Modified Ultrafiltration Membrane with Bioinspired Superwetting Property for High‐Efficient Crude‐Oil-in-Water Emulsion Separation

    • Year: 2018
    • Citations: 316
  • Self-sensing, ultralight, and conductive 3D graphene/iron oxide aerogel elastomer deformable in a magnetic field

    • Year: 2015
    • Citations: 311
  • Measurement of inclusive and differential cross sections in the H → ZZ * → 4ℓ decay channel in pp collisions at TeV with the ATLAS detector

    • Year: 2017
    • Citations: 283
  • Graphene oxide‐based antibacterial cotton fabrics

    • Year: 2013
    • Citations: 265

Emre Cevik Imam | Materials Chemistry | Best Researcher Award

🌟Assoc Prof Dr. Emre Cevik Imam, Materials Chemistry, Best Researcher Award🏆

Associate professor at Abdurrahman Bin Faisal University, Saudi Arabia

Professional Profiles:

Bio Summary:

Dr. Emre Cevik is an accomplished Associate Professor with expertise in biotechnology and electrochemistry. Born on December 18, 1986, in Turkey, he holds Turkish nationality. Fluent in both Turkish and English, Dr. Cevik’s academic journey has been marked by significant contributions to the field.

Education:

Ph.D. (Biotechnology):

Institution: Istanbul University, Istanbul, Turkey

Year of Completion: 2016

M.Sc. (Genetics and Bioengineering):

Institution: Fatih University, Istanbul, Turkey

Year of Completion: 2012

B.Sc. (Chemistry):

Institution: Fatih University, Istanbul, Turkey

Year of Completion: 2009

Research Focus:

Dr. Cevik’s research primarily revolves around electrochemistry, batteries, energy storage, supercapacitors, bio-photovoltaic fuel cells, electrode design, and biosensors. His work has contributed significantly to the understanding and advancement of these fields.

Professional Journey:

Current Position:

Title: Associate Professor

Affiliation: Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, KSA

Duration: Since 2021

Previous Positions:

Assistant Professor, Imam Abdulrahman Bin Faisal University, Dammam, KSA (2017-2021)

General Manager, EMC Technology, Medical, Chemical & Consulting LTD, Istanbul, Turkey (2016-2017)

Researcher, Lund University, Lund, Sweden (2013-2014)

Research Assistant, Istanbul University (Formerly: Fatih University), Istanbul, Turkey (2010-2016)

Honors & Awards:

2016:

Newton Fund – Royal Academy of Engineering Leaders in Innovation Fellowship, United Kingdom

2015:

Turkey’s Ministry of Science, Industry and Technology – The Development of Screen Printed Electrodes for Electrochemical Applications, Istanbul, Turkey

PublicationsTop Noted & Contributions:

Dr. Cevik has a notable list of patents and applications, showcasing his pioneering work in flexible energy storage devices, gel electrolyte capacitors, and various methods for storing energy in hydrogel supercapacitors.

Title: An electrochemical immunosensor for sensitive detection of Escherichia coli O157: H7 by using chitosan, MWCNT, polypyrrole with gold nanoparticles hybrid sensing platform

  • Authors: A Güner, E Çevik, M Şenel, L Alpsoy
  • Journal: Food Chemistry
  • Year: 2017
  • Citations: 151
  • DOI: Link to the paper

Title: Amperometric hydrogen peroxide biosensor based on covalent immobilization of horseradish peroxidase on ferrocene containing polymeric mediator

  • Authors: M Şenel, E Çevik, MF Abasıyanık
  • Journal: Sensors and Actuators B: Chemical
  • Year: 2010
  • Citations: 126
  • DOI: Link to the paper

Title: Jute Sticks Derived and Commercially Available Activated Carbons for Symmetric Supercapacitors with Bio-electrolyte: A Comparative Study

  • Authors: SS Shah, E Cevik, MA Aziz, TF Qahtan, A Bozkurt, ZH Yamani
  • Journal: Synthetic Metals
  • Year: 2021
  • Citations: 100
  • DOI: Link to the paper

Title: Novel electrochemical xanthine biosensor based on chitosan–polypyrrole–gold nanoparticles hybrid bio-nanocomposite platform

  • Authors: M Dervisevic, E Dervisevic, E Çevik, M Şenel
  • Journal: Journal of Food and Drug Analysis
  • Year: 2017
  • Citations: 97

Title: Construction of novel xanthine biosensor by using polymeric mediator/MWCNT nanocomposite layer for fish freshness detection

  • Authors: M Dervisevic, E Custiuc, E Çevik, M Şenel
  • Journal: Food Chemistry

Author Metrics:

Citations:

Dr. Cevik has amassed a total of 2929 citations, indicating the number of times his work has been referenced in academic literature.

Since 2019, he has received 2240 citations, showcasing ongoing impact and relevance in recent years.

h-index (All Time):

The h-index of 33 signifies that Dr. Cevik has 33 publications that have each been cited at least 33 times.

h-index (Since 2019):

The h-index of 29 since 2019 suggests that he has 29 publications with at least 29 citations during this period.

i10-index (All Time):

The i10-index of 74 means that Dr. Cevik has 74 publications that have each received at least 10 citations.

Research Timeline:

Ph.D. Research (2016):

Thesis Title: Designing and Comparison of Electrochemical Biosensors for Detection of Prostate Cancer

M.Sc. Research (2012):

Thesis Title: An Amperometric Biosensor Based on Modified Nanoparticles with an Electron Transfer Mediator for the Determination of Phenol Derivatives

Post-Doctoral Research (2013-2014):

Location: Lund University, Lund, Sweden

This bio summary encapsulates Dr. Emre Cevik’s academic journey, research focus, professional contributions, honors, and awards, providing a comprehensive overview of his notable achievements and expertise in the field.