Bader Alsharif | Computer Science | Best Innovation Award

Dr. Bader Alsharif | Computer Science | Best Innovation Award

Florida Atlantic University, United States

Dr. Bader Alsharif is an accomplished PhD candidate in Computer Engineering with a strong background in teaching, technical support, and curriculum development. He has led innovative projects, including the first CISCO simulation lab in Saudi Arabia, and has managed over 300 devices, optimizing performance and security. With a focus on AI, Cybersecurity, and IoT, particularly in healthcare, Dr. Alsharif has published over 7 peer-reviewed papers. He has demonstrated leadership in both academic and technical spheres, guiding over 200 students and advocating for special needs education, ensuring their academic success. His expertise extends to training professionals, having conducted comprehensive courses for Saudi Telecom employees. Dr. Alsharif has shown a profound commitment to advancing technology and fostering inclusivity, particularly through his work with individuals with special needs. His work bridges technological innovation with social impact, positioning him as a forward-thinking leader in computer engineering and healthcare.

Professional Profile 

Education

Dr. Bader Alsharif has an extensive academic background, beginning with a Bachelor of Science in Computer Engineering from the College of Technology in Riyadh, Saudi Arabia, where he graduated in 2008. He further advanced his studies with a Master of Science in Computer Engineering from the Florida Institute of Technology, completing his degree in 2017. Currently, Dr. Alsharif is pursuing a Doctor of Computer Engineering at Florida Atlantic University in Boca Raton, USA, with an expected graduation date of 2025. His academic journey has been marked by a strong focus on integrating Artificial Intelligence (AI), Cybersecurity, and Internet of Things (IoT) technologies, particularly in healthcare applications. This multidisciplinary education has provided Dr. Alsharif with the expertise to contribute meaningfully to both research and practical innovations in these fields, bridging the gap between technology and real-world healthcare challenges.

Professional Experience

Dr. Bader Alsharif has a diverse professional background with extensive experience in both academia and technical roles. He currently serves as a Teaching Assistant at Florida Atlantic University, where he guides and evaluates over 30 students on engineering design projects and assists more than 200 students with project development and technical issues. Prior to this, Dr. Alsharif held a prominent role as a Lecturer at the Communications and Information College in Riyadh, Saudi Arabia, where he managed and maintained over 300 devices and led the installation of the first CISCO simulation lab in the country. This project, a significant innovation, involved the deployment of over 30 devices and routers. He also trained 100 employees from Saudi Telecom and designed assessments for instructors working with special needs students. Dr. Alsharif’s professional experience reflects a strong blend of technical expertise, leadership, and a commitment to education and inclusivity.

Research Interest

Dr. Bader Alsharif’s research interests lie at the intersection of Artificial Intelligence (AI), Cybersecurity, and the Internet of Things (IoT), with a particular focus on their applications in healthcare. He is deeply committed to exploring how these advanced technologies can be integrated to enhance patient outcomes and improve healthcare systems. His work aims to leverage AI algorithms to optimize medical data analysis, while also addressing critical security concerns in the rapidly growing field of IoT healthcare devices. Dr. Alsharif’s research also extends to the development of innovative solutions for securing healthcare networks and ensuring the privacy of sensitive patient information. With a strong academic foundation and several peer-reviewed publications, he is dedicated to advancing knowledge in these areas and exploring how cutting-edge technologies can be applied to solve real-world challenges in healthcare. His work demonstrates a commitment to both technological innovation and social impact, especially in the realm of health and well-being.

Award and Honor

Dr. Bader Alsharif has received numerous accolades for his contributions to academia and technology. His achievements include successfully leading the installation of the first CISCO simulation lab in Saudi Arabia, which became a groundbreaking project in the region, significantly enhancing the educational infrastructure for telecommunications. In recognition of his exceptional performance in teaching and technical support, he consistently achieved high job performance ratings, including scores no less than 99/100. Dr. Alsharif has also been honored for his commitment to inclusive education, particularly in advocating for and supporting students with special needs, ensuring their academic excellence. His research in AI, Cybersecurity, and IoT, particularly in the healthcare sector, has earned him recognition as a published researcher with over 7 peer-reviewed papers. Through his work, Dr. Alsharif has received recognition from academic institutions and industry professionals for his innovative contributions, leadership, and commitment to fostering technological advancements with social impact.

Conclusion

Bader Alsharif has demonstrated significant innovation across several key areas of AI, Cybersecurity, and IoT, particularly in healthcare. His leadership in education and advocacy for special needs individuals also reflects a deep commitment to both technological advancement and social impact. His ability to lead high-profile projects and publish extensively in relevant fields positions him as a strong candidate for the Best Innovation Award. However, expanding his research impact and involvement in larger-scale, cross-disciplinary projects could further elevate his candidacy. Overall, he has the potential to be an exceptional award recipient based on his innovative contributions and impact.

Publications Top Noted

  • Title: Deep learning technology to recognize American Sign Language alphabet
    Authors: B Alsharif, AS Altaher, A Altaher, M Ilyas, E Alalwany
    Year: 2023
    Citations: 14
  • Title: Internet of things technologies in healthcare for people with hearing impairments
    Authors: B Alsharif, M Ilyas
    Year: 2022
    Citations: 8
  • Title: Deep Learning Technology to Recognize American Sign Language Alphabet Using Multi-Focus Image Fusion Technique
    Authors: B Alsharif, M Alanazi, AS Altaher, A Altaher, M Ilyas
    Year: 2023
    Citations: 6
  • Title: Machine Learning Technology to Recognize American Sign Language Alphabet
    Authors: B Alsharif, M Alanazi, M Ilyas
    Year: 2023
    Citations: 4
  • Title: Enhancing cybersecurity in healthcare: Evaluating ensemble learning models for intrusion detection in the internet of medical things
    Authors: T Alsolami, B Alsharif, M Ilyas
    Year: 2024
    Citations: 3
  • Title: Multi-Dataset Human Activity Recognition: Leveraging Fusion for Enhanced Performance
    Authors: M Alanazi, B Alsharif, AS Altaher, A Altaher, M Ilyas
    Year: 2023
    Citations: 3
  • Title: Transfer learning with YOLOV8 for real-time recognition system of American Sign Language Alphabet
    Authors: B Alsharif, E Alalwany, M Ilyas
    Year: 2024
    Citations: 1
  • Title: Franklin Open
    Authors: B Alsharif, E Alalwany, M Ilyas
    Year: 2024
    Citations: Not available yet

Amir Reza Rahimi | Computer | Best Researcher Award

Dr. Amir Reza Rahimi | Computer | Best Researcher Award

PHD at University of Valencia, Spain

Dr. Amir Reza Rahimi is a Ph.D. candidate at the University of Valencia, specializing in language, literature, culture, and their applications. With extensive experience teaching English at universities, high schools, and language institutes in Iran, he is actively involved in research projects like FORTHEM and SOCIEMOVE, focusing on fostering socioemotional skills through virtual exchange. Dr. Rahimi has conducted workshops for language teachers on integrating technology into English teaching and has published extensively in prestigious journals such as Computer-Assisted Language Learning and Computers in Human Behavior Reports. His research has been presented at international conferences, and he is recognized for introducing innovative educational methodologies, earning the Best Research Award in Innovation in Data Analysis. His expertise spans psycholinguistics, CALL, MOOCs, virtual exchange, and teacher education. With a passion for advancing language learning, Dr. Rahimi continues to make significant contributions to the intersection of technology and education.

Professional Profile 

Education

Dr. Amir Reza Rahimi has an extensive academic background, beginning with a Bachelor’s degree in English Language Teaching from the University of Mohaghegh Ardabili in Iran, completed between 2014 and 2017. He then pursued a Master’s degree in English Language Teaching at Shahid Rajaee Teacher Training University in Tehran, Iran, where he conducted research on the impact of massive open online courses (MOOCs) on Iranian EFL learners’ self-regulation and motivation. Dr. Rahimi is currently a Ph.D. candidate at the University of Valencia, Spain, where he is studying language, literature, culture, and their applications. His doctoral research is focused on exploring innovative methods in language learning, particularly through virtual exchange and computer-assisted language learning (CALL). Throughout his educational journey, Dr. Rahimi has continuously demonstrated a commitment to advancing the field of language education through research, publications, and participation in international academic projects.

Professional Experience

Dr. Amir Reza Rahimi has a rich and diverse professional experience in the field of language education. He has taught English at various institutions, including universities, high schools, and language institutes in Iran, where he developed expertise in teaching English as a foreign language (EFL). His teaching career spans over several years, during which he contributed to curriculum development and language instruction. Dr. Rahimi is currently involved in the FORTHEM Research Project and the SOCIEMOVE project, where he serves as a mentor researcher and focuses on developing socioemotional skills through virtual exchange. Additionally, he has conducted workshops for language teachers, helping them incorporate technology into their teaching practices. His research, which bridges the gap between language learning and technology, has led to numerous publications in high-impact journals. Dr. Rahimi’s professional experience reflects his dedication to enhancing language education through innovative methodologies and research-driven approaches.

Research Interest

Dr. Amir Reza Rahimi’s research interests primarily focus on the intersection of language education, technology, and learner motivation. His work explores various aspects of computer-assisted language learning (CALL), particularly how digital tools and virtual exchanges can enhance language learning experiences. Dr. Rahimi is deeply interested in the role of massive open online courses (MOOCs) and the development of self-regulation and motivation in online language learners. He also delves into psycholinguistics, exploring how emotional and psychological factors influence language acquisition. His research further investigates the impact of socioemotional skills on language learners, especially through virtual exchange programs like SOCIEMOVE. Additionally, he examines theory development in education, with a particular emphasis on innovative research designs, such as bisymmetric approaches. Dr. Rahimi’s work aims to bridge the gap between technology and language teaching, contributing to the advancement of both educational theory and practice in the digital age.

Award and Honor

Dr. Amir Reza Rahimi has received several prestigious awards and honors for his outstanding contributions to language education and research. Notably, he won the Best Research Award in Innovation in Data Analysis from ScienceFather for introducing a new research design to the field of education, specifically a bisymmetric research design. This recognition highlights his innovative approach to research methodology, particularly in the context of computer-assisted language learning (CALL). Dr. Rahimi’s research has also earned him multiple publications in top-tier journals such as Computer-Assisted Language Learning, Computers in Human Behavior Reports, and Education and Information Technologies, where his work on language learning, virtual exchange, and online motivation has gained significant academic attention. His accomplishments have been further acknowledged through his active participation in international conferences, including the TESOL International Convention and the World CALL Conference. Dr. Rahimi’s honors reflect his commitment to advancing language education through technology and innovation.

Conclusion

Amir Reza Rahimi is a highly accomplished researcher whose contributions to CALL, psycholinguistics, and educational technology make him a strong contender for the Best Researcher Award. His innovative approaches, impactful publications, and leadership in international projects are commendable. To further solidify his candidacy, increased interdisciplinary collaboration, a focus on societal impact, and broader dissemination of his work are recommended. Overall, his profile aligns well with the criteria for excellence in research, making him a suitable nominee for this award.

Publications Top Noted

  • The role of university teachers’ 21st-century digital competence in their attitudes toward ICT integration in higher education: Extending the theory of planned behavior
    Authors: AR Rahimi, D Tafazoli
    Year: 2022
    Citation: The JALT CALL Journal, 18(2), 1832-4215
  • Unifying EFL learners’ online self‑regulation and online motivational self‑system in MOOCs: A structural equation modeling approach
    Authors: AR Rahimi, Z Cheraghi
    Year: 2022
    Citation: Journal of Computers in Education, 9(4)
  • EFL learners’ attitudes toward the usability of LMOOCs: A qualitative content analysis
    Authors: AR Rahimi, D Tafazoli
    Year: 2022
    Citation: The Qualitative Report, 27(1), 158-173
  • The role of EFL learners’ L2 self-identities, and authenticity gap on their intention to continue LMOOCs: Insights from an exploratory partial least approach
    Author: AR Rahimi
    Year: 2023
    Citation: Computer Assisted Language Learning, 1-32
  • Online motivational self-system in MOOC: A qualitative study
    Author: AR Rahimi
    Year: 2021
    Citation: From emotion to knowledge: emerging ecosystems in language learning, 79-86
  • Beyond digital competence and language teaching skills: The bi-level factors associated with EFL teachers’ 21st-century digital competence to cultivate 21st-century digital skills
    Author: AR Rahimi
    Year: 2024
    Citation: Education and Information Technologies, 29(8), 9061-9089
  • A bi-phenomenon analysis to escalate higher educators’ competence in developing university students’ information literacy (HECDUSIL): The role of language lecturers’ conceptual …
    Author: AR Rahimi
    Year: 2024
    Citation: Education and Information Technologies, 29(6), 7195-7222
  • The role of twenty-first century digital competence in shaping pre-service teacher language teachers’ twenty-first century digital skills: the Partial Least Square Modeling …
    Authors: AR Rahimi, Z Mosalli
    Year: 2024
    Citation: Journal of Computers in Education
  • A tri-phenomenon perspective to mitigate MOOCs’ high dropout rates: the role of technical, pedagogical, and contextual factors on language learners’ L2 motivational selves, and …
    Author: AR Rahimi
    Year: 2024
    Citation: Smart Learning Environments, 11(1), 11
  • Determinants of Online Platform Diffusion during COVID-19: Insights from EFL Teachers’ Perspectives
    Authors: AR Rahimi, S Atefi Boroujeni
    Year: 2022
    Citation: Journal of Foreign Language Teaching and Translation Studies, 7(4), 111-136
  • The role of ChatGPT readiness in shaping language teachers’ language teaching innovation and meeting accountability: A bisymmetric approach
    Authors: AR Rahimi, A Sevilla-Pavón
    Year: 2024
    Citation: Computers and Education: Artificial Intelligence, 7, 100258
  • Exploring the direct and indirect effects of EFL learners’ online motivational self-system on their online language learning acceptance: the new roles of current L2 self and …
    Authors: AR Rahimi, Z Mosalli
    Year: 2024
    Citation: Asian-Pacific Journal of Second and Foreign Language Education, 9(1), 49

Mohammad Ali Balafar | Computer Science | Best Researcher Award

Prof. Dr. Mohammad Ali Balafar | Computer Science | Best Researcher Award

Prof at University of Tabriz, Iran

Prof. Dr. Mohammad Ali Balafar is a distinguished researcher in Artificial Intelligence and Multimedia Systems. With an h-index of 24 (Google Scholar) and inclusion in Stanford’s top 2% most-cited authors, his work is widely recognized for its impact. He leads the Intelligent Information Technology and Multimedia Research Laboratory at Tabriz University, focusing on deep learning, image processing, machine learning, and graph neural networks. His research projects address real-world problems, including image encryption, stock price prediction, and medical diagnosis through brain image segmentation. Dr. Balafar has authored numerous high-impact publications in reputable journals like IEEE Transactions and Chaos, Solitons & Fractals. Fluent in four languages, he fosters collaboration across diverse academic and cultural landscapes. His work blends innovation with application, making him a pioneer in intelligent systems. A strong advocate of interdisciplinary research, Dr. Balafar’s contributions exemplify excellence in both theoretical advancements and practical implementations.

Professional Profile

Education

Prof. Dr. Mohammad Ali Balafar has a strong academic foundation, specializing in Artificial Intelligence and Multimedia Systems. He earned his Bachelor’s degree in Computer Engineering, laying the groundwork for his expertise in computational systems and programming. Pursuing advanced studies, he obtained a Master’s degree in Software Engineering, where he focused on algorithm development and software methodologies. Dr. Balafar then completed his Ph.D. in Computer Engineering, concentrating on cutting-edge technologies such as image processing, data mining, and deep learning. Throughout his educational journey, he honed his skills in machine learning, graph neural networks, and intelligent information systems, which later became central to his research. His academic excellence was complemented by multilingual proficiency (Azerbaijani, English, Farsi, and Turkish), facilitating collaboration in diverse research environments. These educational milestones have equipped Dr. Balafar with the theoretical knowledge and technical expertise essential for pioneering innovations in artificial intelligence and intelligent multimedia technologies.

Professional  Experience

Prof. Dr. Mohammad Ali Balafar is a seasoned academic and researcher with extensive experience in Artificial Intelligence and Multimedia Systems. Currently, he serves as a faculty member in the Department of Electrical and Computer Engineering at Tabriz University. He is the founder and head of the Intelligent Information Technology and Multimedia Research Laboratory, established in 1391 (2012), where he leads innovative projects in areas such as image processing, machine vision, and robotics. Dr. Balafar has been instrumental in advancing intelligent multimedia systems through diverse research initiatives, including expert recommendation systems, stock price prediction, and medical imaging for diagnosing diseases like MS. He has authored numerous high-impact publications and collaborated with leading scholars, contributing to advancements in fields such as deep learning and data mining. With fluency in multiple languages and a global academic network, his professional career reflects a blend of academic rigor, research innovation, and leadership in cutting-edge technology development.

Research Interests

Prof. Dr. Mohammad Ali Balafar’s research interests are deeply rooted in the fields of Artificial Intelligence, Machine Learning, and Multimedia Systems, with a focus on addressing complex computational challenges. His expertise spans a wide range of cutting-edge topics, including Deep Learning, Image Processing, Computer Vision, and Graph Neural Networks. He is particularly interested in developing intelligent systems that can process and analyze visual data, such as creating efficient algorithms for image encryption, clustering, and anomaly detection. Dr. Balafar’s work also delves into Data Mining, where he applies advanced techniques to uncover patterns and insights in domains such as medical diagnostics, stock price prediction, and emergency service optimization. His contributions aim to bridge the gap between theory and application, advancing technologies that enhance real-world decision-making. This interdisciplinary approach not only pushes the boundaries of innovation but also showcases his dedication to solving impactful societal and scientific problems.

Awards and Honors

Prof. Dr. Mohammad Ali Balafar is a highly acclaimed researcher whose contributions have been recognized through various awards and honors. Notably, he has been included in Stanford University’s list of the top 2% most-cited scientists worldwide, based on a one-year performance metric—a testament to his impactful research and global influence in Artificial Intelligence and Multimedia Systems. Dr. Balafar’s scholarly achievements, reflected in his impressive h-index of 24 (Google Scholar) and over 2,380 citations, underscore his standing as a leading researcher in fields like Deep Learning, Image Processing, and Graph Neural Networks. His role as the head of the Intelligent Information Technology and Multimedia Research Laboratory further highlights his leadership in advancing innovative solutions for complex technological challenges. These accolades, combined with his extensive publication record in top-tier journals, position Dr. Balafar as a pioneer in his domain, earning him well-deserved recognition in the academic and research communities.

Conclusion

Dr. Mohammad Ali Balafar is a highly accomplished researcher with a solid track record of impactful publications, innovative research, and academic leadership. His diverse skill set, coupled with his contributions to AI and multimedia systems, makes him a strong candidate for the Best Researcher Award. Enhancing his global collaborations and industry engagement could further solidify his standing as a leading figure in his field.

Publications Top Noted

  • Review of brain MRI image segmentation methods
    • Authors: MA Balafar, AR Ramli, MI Saripan, S Mashohor
    • Year: 2010
    • Citations: 643
  • Gene selection for microarray cancer classification using a new evolutionary method employing artificial intelligence concepts
    • Authors: M Dashtban, M Balafar
    • Year: 2017
    • Citations: 167
  • A hybrid algorithm using a genetic algorithm and multiagent reinforcement learning heuristic to solve the traveling salesman problem
    • Authors: MM Alipour, SN Razavi, MR Feizi Derakhshi, MA Balafar
    • Year: 2018
    • Citations: 134
  • A novel image encryption algorithm based on polynomial combination of chaotic maps and dynamic function generation
    • Authors: M Asgari-Chenaghlu, MA Balafar, MR Feizi-Derakhshi
    • Year: 2019
    • Citations: 131
  • Gene selection for tumor classification using a novel bio-inspired multi-objective approach
    • Authors: M Dashtban, M Balafar, P Suravajhala
    • Year: 2018
    • Citations: 104
  • Gaussian mixture model based segmentation methods for brain MRI images
    • Authors: MA Balafar
    • Year: 2014
    • Citations: 95
  • The state-of-the-art in expert recommendation systems
    • Authors: N Nikzad–Khasmakhi, MA Balafar, MR Feizi–Derakhshi
    • Year: 2019
    • Citations: 89
  • Fuzzy C-mean based brain MRI segmentation algorithms
    • Authors: MA Balafar
    • Year: 2014
    • Citations: 85
  • CGFFCM: Cluster-weight and Group-local Feature-weight learning in Fuzzy C-Means clustering algorithm for color image segmentation
    • Authors: AG Oskouei, M Hashemzadeh, B Asheghi, MA Balafar
    • Year: 2021
    • Citations: 70
  • CWI: A multimodal deep learning approach for named entity recognition from social media using character, word and image features
    • Authors: M Asgari-Chenaghlu, MR Feizi-Derakhshi, L Farzinvash, MA Balafar
    • Year: 2022
    • Citations: 48
  • Cy: Chaotic yolo for user intended image encryption and sharing in social media
    • Authors: M Asgari-Chenaghlu, MR Feizi-Derakhshi, N Nikzad-Khasmakhi
    • Year: 2021
    • Citations: 36
  • A new method for MR grayscale inhomogeneity correction
    • Authors: MA Balafar, AR Ramli, S Mashohor
    • Year: 2010
    • Citations: 36

Humam Kourani | Computer Science | Best Researcher Award

Mr. Humam Kourani | Computer Science | Best Researcher Award

Research Associate at Fraunhofer FIT, Germany

Mr. Humam Kourani is a dedicated and highly skilled researcher with a strong background in Data Science and Computer Science. He holds both a Master’s and Bachelor’s degree from RWTH Aachen University, specializing in process mining, artificial intelligence, and data-driven decision-making. He has gained valuable experience working in research institutions and industry settings, most notably at the Fraunhofer Institute for Applied Information Technology and Fondazione Bruno Kessler in Italy. His research focuses on improving data science methodologies, particularly in process mining and workflow language models. With a solid academic foundation, practical experience, and significant contributions to his field, Humam has proven himself to be a promising and impactful researcher.

Professional Profile

Education

Humam Kourani completed his Master of Science in Data Science from RWTH Aachen University in 2022, with a focus on Computer Science. His master’s thesis explored the improvement of the Hybrid Miner by utilizing causal graph metrics, an area critical for process mining. Prior to that, he earned his Bachelor of Science degree in Computer Science from the same institution in 2019. His Bachelor’s thesis involved the development of a scalable interactive event data visualization tool in Python, further showcasing his technical skills. Humam’s academic journey reflects his dedication to mastering complex data science concepts and his drive to contribute to the field’s advancement through academic research and innovation.

Professional  Experience

Mr. Kourani’s professional experience spans key positions in research and data science. Since May 2022, he has been working as a Research Associate at the Fraunhofer Institute for Applied Information Technology, specializing in Data Science and Artificial Intelligence. In this role, he contributes to research on process mining, artificial intelligence, and data-driven decision-making. Earlier, he held student assistant roles at RWTH Aachen University, including positions at the Chair of Process and Data Science and the Chair of Process and Data Science in 2021. Humam also completed an Erasmus+ internship at Fondazione Bruno Kessler in Italy, where he gained hands-on experience in process and data intelligence. His professional experience reflects a consistent focus on leveraging data science and AI for practical problem-solving and research innovation.

Research Interests

Humam Kourani’s research interests lie primarily in data science, artificial intelligence, and process mining. He is particularly focused on enhancing data-driven methods for analyzing and improving business processes, with an emphasis on process modeling and workflow languages. His recent work has explored innovative approaches, such as large language models for process modeling, and improving existing hybrid mining techniques using causal graph metrics. Through his work, Humam aims to bridge the gap between advanced computational techniques and practical business process applications, enabling more efficient decision-making. His research also delves into the intersection of data science and AI, with a strong interest in developing scalable models that address real-world challenges across various industries.

Awards and Honors

Humam Kourani has received several prestigious awards in recognition of his outstanding research contributions. He won the Best Paper Award at the EMMSAD 2024 conference for his paper on “Process Modeling with Large Language Models”. Additionally, he received the Best Paper Award at the BPM 2023 conference for his work on the “POWL: Partially Ordered Workflow Language”. These awards highlight the significance of his research in the fields of process mining and business process management. Humam was also honored with membership in the PADS Excellence Honors Class at RWTH Aachen University in 2022, further underscoring his academic excellence. These honors attest to his innovative contributions to the research community and his growing influence in the fields of data science and AI.

Conclusion

Humam Kourani is undoubtedly a highly talented researcher with a solid foundation in data science and process mining. His research achievements, international experience, and awards demonstrate that he is already making significant contributions to his field. His multidisciplinary skills, coupled with his passion for continuous learning, make him a standout candidate for the Best Researcher Award. While there are opportunities for growth in areas like expanding his publication base and increasing leadership roles in research initiatives, his strengths far outweigh these minor areas of improvement. Humam Kourani is a promising researcher with the potential for continued excellence and impact in the field of data science and artificial intelligence.

Publications Top Noted

  • Title: Process Modeling With Large Language Models
    Authors: H. Kourani, A. Berti, D. Schuster, W.M.P. van der Aalst
    Year: 2024
    Citations: 21
  • Title: Evaluating Large Language Models in Process Mining: Capabilities, Benchmarks, Evaluation Strategies, and Future Challenges
    Authors: A. Berti, H. Kourani, H. Hafke, C.Y. Li, D. Schuster
    Year: 2024
    Citations: 8
  • Title: POWL: Partially Ordered Workflow Language
    Authors: H. Kourani, S.J. van Zelst
    Year: 2023
    Citations: 7
  • Title: ProMoAI: Process Modeling with Generative AI
    Authors: H. Kourani, A. Berti, D. Schuster, W.M.P. van der Aalst
    Year: 2024
    Citations: 5
  • Title: PM4KNIME: Process Mining Meets the KNIME Analytics Platform
    Authors: H. Kourani, S.J. van Zelst, B.D. Lehmann, G. Einsdorf, S. Helfrich, F. Liße
    Year: 2022
    Citations: 5
  • Title: Scalable Discovery of Partially Ordered Workflow Models with Formal Guarantees
    Authors: H. Kourani, D. Schuster, W. Van Der Aalst
    Year: 2023
    Citations: 4
  • Title: PM-LLM-Benchmark: Evaluating Large Language Models on Process Mining Tasks
    Authors: A. Berti, H. Kourani, W.M.P. van der Aalst
    Year: 2024
    Citations: 3
  • Title: Discovering Hybrid Process Models with Bounds on Time and Complexity: When to be Formal and When Not?
    Authors: W.M.P. van der Aalst, R. De Masellis, C. Di Francescomarino, C. Ghidini, H. Kourani
    Year: 2023
    Citations: 3
  • Title: Evaluating Large Language Models in Process Mining: Capabilities, Benchmarks, and Evaluation Strategies
    Authors: A. Berti, H. Kourani, H. Häfke, C.Y. Li, D. Schuster
    Year: 2024
    Citations: 2
  • Title: Mining for Long-Term Dependencies in Causal Graphs
    Authors: H. Kourani, C. Di Francescomarino, C. Ghidini, W. van der Aalst, S. van Zelst
    Year: 2022
    Citations: 2
  • Title: Bridging Domain Knowledge and Process Discovery Using Large Language Models
    Authors: A. Norouzifar, H. Kourani, M. Dees, W. van der Aalst
    Year: 2024
    Citations: 0 (preprint)
  • Title: Leveraging Large Language Models for Enhanced Process Model Comprehension
    Authors: H. Kourani, A. Berti, J. Hennrich, W. Kratsch, R. Weidlich, C.Y. Li, A. Arslan, et al.
    Year: 2024
    Citations: 0 (preprint)
  • Title: Discovering Hybrid Process Models with Bounds on Time and Complexity: When to be Formal and When Not?
    Authors: W. van der Aalst, R. De Masellis, C. Di Francescomarino, C. Ghidini, H. Kourani
    Year: 2023
    Citations: 0

Shahbaz Gul Hassan | Computer Science | Best Researcher Award

Assoc. Prof. Dr.Shahbaz Gul Hassan | Computer Science | Best Researcher Award

Associat professor at Zhongkai University of Agriculture and Engineering, China

Dr. Shahbaz Gul Hassan is an accomplished Associate Professor at Zhongkai University of Agriculture and Engineering, specializing in agricultural information technology and computer science. With a strong academic background, including a Ph.D. from China Agricultural University, he focuses on machine learning, image processing, and predictive modeling in the context of agricultural and environmental systems. His work has earned significant recognition, including awards for research and innovation in agricultural technology. Dr. Hassan’s numerous high-impact publications in top-tier journals demonstrate his ability to integrate advanced computational techniques into real-world applications in agriculture.

Professional Profile

Education

Dr. Shahbaz Gul Hassan completed his Ph.D. in Agricultural Information Technology at China Agricultural University, Beijing, in 2017. His research during his Ph.D. focused on the integration of information technology with agriculture, particularly in areas such as machine learning and predictive modeling. Prior to his Ph.D., he earned a Master’s in Computer Science from PMAS Arid Agriculture University, Rawalpindi, in 2011, where he developed a deep understanding of computer science applications in agriculture. He completed his Bachelor’s degree in Science from the University of Punjab, Lahore, in 2007. These educational milestones have equipped Dr. Hassan with a solid foundation in both computer science and agricultural technology, enabling him to innovate at the intersection of these two fields. His academic journey reflects a consistent focus on enhancing agricultural practices through advanced technologies, positioning him as a leading figure in agricultural information systems and technology research.

Experience

Dr. Shahbaz Gul Hassan has extensive experience in both academia and industry. He is currently an Associate Professor at Zhongkai University of Agriculture and Engineering, Guangzhou, China, where he has been teaching since 2019. Prior to this, he served as a Postdoctoral Researcher in Agricultural Engineering at South China Agricultural University, Guangzhou, from 2017 to 2019. In this role, he applied his expertise in machine learning and image processing to agricultural engineering projects. Dr. Hassan also worked as a Ph.D. Research Scholar at China Agricultural University, Beijing, from 2013 to 2017, where he focused on applying technology to solve critical problems in agriculture. Earlier, he worked as a Software Engineer at MTBC in Rawalpindi from 2011 to 2012. His diverse professional experience blends research, teaching, and practical applications of technology in agriculture, with a focus on using advanced computing to optimize agricultural processes.

Research Interests

Dr. Shahbaz Gul Hassan’s research focuses on the application of machine learning, image processing, and predictive modeling to solve agricultural challenges. He is particularly interested in developing smart technologies for precision farming and environmental monitoring. One of his key areas of research involves computer vision and machine learning techniques for detecting and predicting behaviors and conditions in agricultural environments, such as water quality and animal health. His work aims to enhance automation in agriculture and improve sustainability by leveraging data-driven technologies. Dr. Hassan also focuses on predictive modeling for environmental variables such as humidity, temperature, and dissolved oxygen levels in aquaculture. These models help optimize farming processes and ensure better resource management. His research not only pushes the boundaries of agricultural technology but also contributes to the development of sustainable practices in farming and aquaculture. Dr. Hassan’s interdisciplinary approach integrates computer science and engineering with practical agricultural needs to drive innovation.

Awards and Honors

Dr. Shahbaz Gul Hassan has received numerous prestigious awards for his outstanding contributions to agricultural research. In December 2023, he was honored with the First Prize in the Guangdong Province Agricultural Technology Promotion Award. He also received the Third Prize from the Guangdong Provincial Science and Technology Department in January 2024. Dr. Hassan’s work on a microservice-based agricultural app earned him the Second Prize in the 16th China University Computer Design Competition in the Guangdong-Hong Kong-Macao Greater Bay Area. Additionally, he was awarded the Excellent Instructor Award in the 13th Blue Bridge Cup Provincial Competition. His work has been recognized by the Guangdong Computer Society, where he received the Second Prize for Outstanding Paper. These awards reflect Dr. Hassan’s innovative approach to integrating advanced technologies in agriculture, as well as his ability to drive real-world impact with his research. His accolades highlight his leadership and dedication to improving agricultural technologies globally.

Conclusion

Dr. Shahbaz Gul Hassan is an outstanding candidate for the Best Researcher Award. His innovative approach to integrating machine learning with agricultural processes, alongside his strong academic qualifications and prolific output, make him a leading figure in his field. His numerous prestigious awards and contributions to practical agricultural technologies demonstrate the significant real-world impact of his work. Dr. Hassan is a researcher who continues to push the boundaries of knowledge and practical application in agricultural engineering and information technology, making him a valuable contender for the award.

Publications Top Noted

Title: Green synthesis of iron oxide nanorods using Withania coagulans extract improved photocatalytic degradation and antimicrobial activity
Authors: S Qasim, A Zafar, MS Saif, Z Ali, M Nazar, M Waqas, AU Haq, T Tariq, …
Citations: 175
Year: 2020

Title: Prediction of the temperature in a Chinese solar greenhouse based on LSSVM optimized by improved PSO
Authors: H Yu, Y Chen, SG Hassan, D Li
Citations: 158
Year: 2016

Title: Bioinspired synthesis of zinc oxide nano-flowers: A surface enhanced antibacterial and harvesting efficiency
Authors: M Hasan, M Altaf, A Zafar, SG Hassan, Z Ali, G Mustafa, T Munawar, …
Citations: 114
Year: 2021

Title: Models for estimating feed intake in aquaculture: A review
Authors: M Sun, SG Hassan, D Li
Citations: 108
Year: 2016

Title: Phyto-reflexive zinc oxide nano-flowers synthesis: an advanced photocatalytic degradation and infectious therapy
Authors: MS Saif, A Zafar, M Waqas, SG Hassan, A ul Haq, T Tariq, S Batool, …
Citations: 75
Year: 2021

Title: Fractionation of Biomolecules in Withania coagulans Extract for Bioreductive Nanoparticle Synthesis, Antifungal and Biofilm Activity
Authors: M Hasan, A Zafar, I Shahzadi, F Luo, SG Hassan, T Tariq, S Zehra, …
Citations: 66
Year: 2020

Title: Phytotoxic evaluation of phytosynthesized silver nanoparticles on lettuce
Authors: M Hasan, K Mehmood, G Mustafa, A Zafar, T Tariq, SG Hassan, …
Citations: 53
Year: 2021

Title: Green synthesis of Cordia myxa incubated ZnO, Fe2O3, and Co3O4 nanoparticle: Characterization, and their response as biological and photocatalytic agent
Authors: S Batool, M Hasan, M Dilshad, A Zafar, T Tariq, Z Wu, R Chen, …
Citations: 49
Year: 2022

Title: Physiological and anti-oxidative response of biologically and chemically synthesized iron oxide: Zea mays a case study
Authors: M Hasan, S Rafique, A Zafar, S Loomba, R Khan, SG Hassan, MW Khan, …
Citations: 47
Year: 2020

Title: Dissolved oxygen content prediction in crab culture using a hybrid intelligent method
Authors: H Yu, Y Chen, SG Hassan, D Li
Citations: 43
Year: 2016

Title: Cursive handwritten text recognition using bi-directional LSTMs: a case study on Urdu handwriting
Authors: S Hassan, A Irfan, A Mirza, I Siddiqi
Citations: 42
Year: 2019

Title: Green synthesized ZnO-Fe2O3-Co3O4 nanocomposite for antioxidant, microbial disinfection and degradation of pollutants from wastewater
Authors: S Batool, M Hasan, M Dilshad, A Zafar, T Tariq, A Shaheen, R Iqbal, Z Ali, …
Citations: 41
Year: 2022

Title: A hybrid model for short-term dissolved oxygen content prediction
Authors: J Huang, S Liu, SG Hassan, L Xu, C Huang
Citations: 39
Year: 2021

Title: Biological synthesis of bimetallic hybrid nanocomposite: a remarkable photocatalyst, adsorption/desorption and antimicrobial agent
Authors: X Huang, A Zafar, K Ahmad, M Hasan, T Tariq, S Gong, SG Hassan, …
Citations: 36
Year: 2023

Title: Nano-managing silver and zinc as bio-conservational approach against pathogens of the honey bee
Authors: R Hussain, M Hasan, KJ Iqbal, A Zafar, T Tariq, MS Saif, SG Hassan, …
Citations: 33
Year: 2023