Zainab Mahdi Saleh | Engineering | Women Researcher Award

Mrs. Zainab Mahdi Saleh | Engineering | Women Researcher Award

An engineer at the Iraqi Ministry of Health at University of Babylon, Iraq

Mrs. Zainab Mahdi Saleh is an accomplished mechanical engineer specializing in thermodynamics, currently pursuing a Ph.D. at the University of Babylon. She holds a Master’s degree from the University of Wasit and has conducted significant research on energy-efficient cooling systems, publishing multiple papers on desiccant wheel performance and heat transfer enhancement. With extensive experience in mechanical systems, she has held various leadership roles in hospital infrastructure management, overseeing central cooling, generators, and medical oxygen systems. Proficient in ANSYS and other engineering software, she combines theoretical expertise with practical applications. A dedicated educator, she serves as an Assistant Lecturer and is an active member of the Iraqi Engineers Union. Her strong English proficiency and technical skills make her a valuable contributor to the field. To further enhance her impact, she aims to expand her research internationally, secure funding, and mentor young engineers, particularly women in STEM.

Professional Profile

Education

Mrs. Zainab Mahdi Saleh has a strong academic background in mechanical engineering, specializing in thermodynamics. She earned her Bachelor’s degree in Mechanical Engineering from the University of Thi Qar in 2008 and later pursued a Master’s degree in Mechanical Engineering at the University of Wasit, which she completed in 2020. Currently, she is a Ph.D. candidate at the University of Babylon, focusing on advanced research in thermodynamics. Her academic journey reflects a commitment to scientific excellence and continuous learning. Throughout her studies, she has developed expertise in energy-efficient cooling systems and heat transfer enhancement, contributing to innovative research in her field. She has also undertaken specialized courses in mechanical engineering, ANSYS software, and teaching methodologies, further strengthening her technical and instructional capabilities. Her dedication to education and research positions her as a leading figure in engineering, striving to make meaningful contributions to both academia and industry.

Professional Experience

Mrs. Zainab Mahdi Saleh has extensive professional experience in mechanical engineering, specializing in thermodynamics and energy systems. She has held various leadership positions in healthcare infrastructure management, overseeing critical mechanical systems such as central cooling, generators, and medical oxygen units. Her career began as a Maintenance Unit Supervisor at Al-Hay Health Sector in 2009, followed by roles at Al-Karama Teaching Hospital and Badra Model Health Center, where she managed mechanical and generator maintenance. She later advanced to Assistant Head of the Mechanical Division at Al-Zahraa Teaching Hospital, eventually becoming the Supervisor of both the Central Cooling and Medical Oxygen Units. In addition to her technical expertise, she serves as an Assistant Lecturer, contributing to academic research and mentoring students in mechanical engineering. Her combined experience in practical engineering applications and academia positions her as a leader in the field, bridging the gap between research and real-world industrial challenges.

Research Interest

Mrs. Zainab Mahdi Saleh’s research interests lie in the fields of thermodynamics, heat transfer enhancement, and energy-efficient cooling systems. She focuses on optimizing the performance of desiccant wheel technology to reduce latent heat loads in air conditioning systems, contributing to improved energy efficiency and sustainability. Her work also explores innovative heat transfer techniques in double-pipe heat exchangers, utilizing advanced methods such as wavy edge twisted tapes with varying twist ratios and perforated diameters to enhance thermal performance. With a strong background in both theoretical and experimental studies, she aims to develop practical solutions for industrial and environmental applications. Additionally, her expertise in mechanical systems, including medical oxygen and central cooling units, allows her to bridge the gap between research and real-world engineering challenges. By expanding her studies to include renewable energy integration, she seeks to further advance sustainable thermal management technologies for future applications.

Award and Honor

Mrs. Zainab Mahdi Saleh has earned recognition for her contributions to mechanical engineering, particularly in the field of thermodynamics and energy-efficient cooling systems. As an accomplished researcher, she has published multiple scientific papers in reputable university journals, showcasing her expertise in heat transfer enhancement and desiccant wheel technology. Her dedication to academia and research has positioned her as a respected scholar in her field. In addition to her academic achievements, she has held leadership roles in various healthcare institutions, demonstrating her ability to apply engineering principles to critical infrastructure management. Her commitment to education is evident in her role as an Assistant Lecturer, where she mentors and guides students in mechanical engineering. As a member of the Iraqi Engineers Union, she actively contributes to the engineering community. While she continues to advance her research, further recognition through national and international awards would strengthen her impact and professional standing.

Research Skill

Mrs. Zainab Mahdi Saleh possesses strong research skills in thermodynamics, heat transfer, and energy-efficient cooling systems. She excels in both theoretical and experimental research, demonstrated by her studies on desiccant wheel performance and heat exchangers. Her expertise includes conducting experimental setups, data analysis, and computational simulations using ANSYS software, enhancing the accuracy and efficiency of her findings. She is skilled in designing and optimizing mechanical systems to improve energy performance, particularly in HVAC and industrial cooling applications. Her ability to integrate engineering principles with real-world applications is evident in her research on moisture adsorption materials and innovative heat transfer techniques. Additionally, she is proficient in academic writing and has successfully published her work in university journals. Her analytical approach, problem-solving abilities, and technical expertise make her a valuable contributor to the field. As she advances in her Ph.D. research, her skills continue to evolve, driving innovation in mechanical engineering.

Conclusion

Zainab Mahdi Saleh is a strong candidate for the Women Researcher Award, given her academic achievements, research contributions, technical expertise, and leadership in the field of mechanical engineering. Her work on energy-efficient cooling and heat transfer enhancement is highly relevant to sustainability and industrial advancements.

To further enhance her candidacy, she could focus on expanding her research to international platforms, securing research funding, and mentoring the next generation of engineers, particularly women in STEM. Overall, her profile reflects dedication, technical excellence, and leadership, making her a deserving contender for this prestigious award.

Publications Top Noted

  • Title: “Theoretical Performance of Silica Gel Desiccant Wheel”

    • Authors: ZM Salih, ADM Hassan, AM Al-Dabagh
    • Journal: Wasit Journal of Engineering Sciences, Volume 7, Issue 3, Pages 66-74
    • Year: 2019
    • Citations: 1
  • Title: “The Experimentally Studying of Solid Desiccant Wheel Performance Combined with the System of Air Conditioning”

    • Authors: ZM Salih, ADM Hassen, AM Al-Dabagh
    • Journal: Journal of University of Babylon for Engineering Sciences, Pages 50-59
    • Year: 2019
    • Citations: 1

 

 

Mohammed Sulaiman | Engineering | Best Researcher Award

Dr. Mohammed Sulaiman | Engineering | Best Researcher Award

University Lecturer at Erbil Polytechnic University, Iraq

Dr. Mohammed Abdulqader Sulaiman is an accomplished researcher and academic specializing in Thermal Power Engineering. With a Ph.D. from Erbil Polytechnic University (2024), he has dedicated his career to advancing energy efficiency and cooling technologies. His research focuses on novel evaporative cooling systems, reflected in multiple publications in reputable international journals. As a lecturer and former Deputy Head of the Mechanical and Energy Engineering Department, he has played a vital role in academic leadership, laboratory development, and student mentorship. Proficient in engineering software like MATLAB, AutoCAD, and ANSYS, he integrates practical and theoretical expertise in his work. His contributions to renewable energy and refrigeration technologies position him as a strong candidate for research recognition, with potential for further impact through high-impact publications, industry collaborations, and research grants.

Profession Profile

Education

Dr. Mohammed Abdulqader Sulaiman holds a Ph.D. in Thermal Power Engineering from Erbil Polytechnic University (2024), where he also earned his M.Sc. in Thermal Power Engineering in 2016 and his B.Sc. in Refrigeration and Air-Conditioning Engineering in 2012. His academic journey has been dedicated to energy efficiency, heat transfer, and sustainable cooling technologies. Through his advanced studies, he has developed expertise in renewable energy, thermodynamics, and innovative cooling systems, contributing to both theoretical advancements and practical applications in the field of mechanical and energy engineering.

Professional Experience

Dr. Mohammed Abdulqader Sulaiman has extensive professional experience in academia and research, primarily at Erbil Polytechnic University. Since 2012, he has been a lecturer in the Mechanical and Energy Engineering Department, specializing in thermodynamics, renewable energy, and heat transfer. He served as Deputy Head of the department from 2017 to 2021, overseeing academic programs and research initiatives. Additionally, he has held key leadership roles, including Head of Laboratories and Workshops and In-Charge of Engineering Laboratories, contributing to the development of research infrastructure. Dr. Sulaiman has also been an active member of various academic committees, including the Examination and Summer Training Committees, demonstrating his commitment to student mentorship and curriculum development. His expertise in MATLAB, AutoCAD, and ANSYS further enhances his contributions to engineering education and research.

Research Interest

Dr. Mohammed Abdulqader Sulaiman’s research interests lie in the fields of thermal power engineering, energy efficiency, and innovative cooling technologies. His work focuses on dew-point evaporative cooling systems, heat and mass transfer, and sustainable energy solutions, aiming to improve cooling performance while reducing energy consumption. He is particularly interested in renewable energy applications, including solar, hydropower, wind, and geothermal energy, as well as advancements in refrigeration and air-conditioning systems. His research integrates experimental and numerical analysis, utilizing computational tools such as MATLAB, AutoCAD, and ANSYS to develop innovative thermal management solutions. Through his studies, Dr. Sulaiman aims to contribute to the development of energy-efficient and environmentally friendly technologies, addressing the growing global

Award and Honor

Dr. Mohammed Abdulqader Sulaiman has been recognized for his contributions to research and academia through various awards and honors. His dedication to thermal power engineering and energy efficiency has earned him appreciation within the academic and research community. As a member of the Kurdistan Engineers Association and Kurdistan Teachers Union, he has been acknowledged for his role in advancing engineering education and research. His innovative work in dew-point evaporative cooling systems and renewable energy applications has been published in reputable international journals, showcasing his impact in the field. With a strong academic and research background, he is a promising candidate for prestigious awards such as the Best Researcher Award, recognizing his commitment to scientific advancements and sustainable engineering solutions.

Conclusion

Mohammed Abdulqader Sulaiman is a strong candidate for the Best Researcher Award due to his solid academic background, research contributions, and leadership roles. While there are areas for further development, his expertise in thermal power engineering, innovative research in evaporative cooling, and commitment to education make him a competitive nominee.

Publications Top Noted

  • Title: Experimental and numerical investigation of novel dew-point evaporative cooler with shell and tube design
    Authors: MA Sulaiman, HA Saber, HF Hasan, AC Benim
    Year: 2025
    Citations: –

  • Title: Performance analysis of novel dew point evaporative cooler with shell and tube design through different air-water flow configurations
    Authors: MA Sulaiman, AM Adham, HF Hasan, AC Benim, HA Anjal
    Year: 2023
    Citations: 6

  • Title: Evaluation of new dew point evaporative cooler heat and mass exchanger designs with different geometries
    Authors: MA Sulaiman, AM Adham
    Year: 2023
    Citations: 4

  • Title: Energy Performance Analysis of Dew Point Evaporative Cooler with Novel Heat and Mass Exchanger Design
    Authors: MA Sulaiman, AM Adham
    Year: 2023
    Citations: 1

  • Title: Assessing the Performance of Novel Dew Point Evaporative Cooler Considering the Climatic Conditions of Different Cities in Iraq
    Authors: MA Sulaiman, AM Adham
    Year: 2023
    Citations: 1

  • Title: Enhancement of the Overall Performance of Vapor Compression Refrigeration System (VCRS) using Environmentally Friendly Refrigerant and Jumping Capacitors – Experimental Study
    Authors: ZK Shakir, AM Adham, MA Sulaiman, NK Mohammed
    Year: 2020
    Citations: 3

  • Title: Thermal and Hydrodynamic Characteristics of Graphite-H2O and CuO-H2O Nanofluids in Microchannel Heat Sinks
    Authors: SFO Mohammed Abdulqader Sulaiman, Ahmed Mohammed Adham
    Year: 2020
    Citations: 1*

  • Title: Design of a Domestic Diffusion Absorption Refrigeration System Using Evolutionary Algorithm
    Authors: AM Adham, MA Sulaiman
    Year: 2017
    Citations: 6