Dengtian Yang | Computer Science | Best Researcher Award

Mr. Dengtian Yang | Computer Science | Best Researcher Award

Student at Institute of Microelectronics of the Chinese Academy of Sciences, China

Yang Dengtian is a promising researcher in the field of Circuit and System, currently pursuing his Ph.D. at the Institute of Microelectronics of the Chinese Academy of Sciences. His research interests focus on hardware-software co-optimization, object detection, and hardware acceleration, with key contributions in developing post-processing accelerators for object detection and improving micro-architecture design for GPGPU. Yang’s project experience spans from UAV object detection to the design of System on Chip (SoC) and the deployment of deep learning models on specialized hardware like NVDLA IP. His dedication to advancing technology is reflected in his published works in renowned journals. Yang is a proactive learner, often sharing his findings on blogs, contributing to the academic community’s growth. His work is poised to have a significant impact in fields such as artificial intelligence, hardware design, and computer vision.

Professional Profile 

Education

Yang Dengtian began his academic journey at Xi’an Jiaotong University, where he earned his Bachelor’s degree in Electronic Science and Technology in 2020. His strong foundational knowledge in electronics laid the groundwork for his current research. In 2020, he began his Ph.D. at the Institute of Microelectronics of the Chinese Academy of Sciences, specializing in Circuit and System. His doctoral research has primarily focused on hardware-software co-optimization and advanced object detection systems, areas that combine his deep understanding of both electronics and cutting-edge computing techniques. Yang’s education has been integral in shaping his research pursuits, allowing him to contribute valuable insights into hardware acceleration and the optimization of machine learning systems. His academic journey is ongoing, with an expected completion of his Ph.D. in 2025.

Professional Experience

Yang has worked on several innovative projects throughout his academic career. His recent project, “Learn and Improve Vortex GPGPU,” focuses on understanding GPGPU micro-architecture design and developing improvements for performance optimization. Another notable project was the “Post-Processing Accelerator for Object Detection,” where he investigated hardware-software co-optimization methods, contributing to the development of a unified accelerator system for object detection. In 2023, Yang worked on the “SoC Building and Yolox-Nano Network Deployment Based on NVDLA IP,” where he built an SoC with NVDLA IP and deployed a Yolox-Nano model on a specialized hardware platform. Yang has also worked on solutions to reduce off-chip memory accesses for CNN inference and deployed deep learning models using Vitis-AI. These experiences, along with his publications in renowned journals, highlight his advanced technical expertise and problem-solving abilities in cutting-edge electronics and AI research.

Research Interest

Yang Dengtian’s primary research interest lies in the intersection of Circuit and System design, hardware-software co-optimization, and artificial intelligence (AI). His work focuses on developing hardware accelerators for deep learning applications, particularly in object detection and micro-architecture optimization. He is passionate about creating more efficient systems for processing large-scale data, especially in environments that require real-time processing, such as unmanned aerial vehicles (UAVs) and embedded systems. Yang’s research includes developing GPGPU micro-architectures, improving System on Chip (SoC) designs, and enhancing the deployment of deep learning models on specialized hardware, such as NVDLA IP. His research aims to bridge the gap between hardware capabilities and software needs, making AI applications more accessible and efficient. He is particularly interested in creating unified frameworks for hardware-software co-design, which could significantly advance machine learning and computer vision technologies.

Awards and Honors

Yang Dengtian’s outstanding contributions to research have been recognized through various accolades. His publication in reputable journals, such as Information and IEICE Transactions on Information and Systems, demonstrates the impact of his work in the field of hardware and software co-optimization. While still early in his career, Yang’s commitment to research excellence has already led to numerous recognitions in his academic community. He has also been acknowledged for his innovative projects in hardware acceleration for AI applications, particularly in the development of post-processing accelerators for object detection. Yang’s work is a testament to his technical expertise and his potential for future awards as his research continues to make significant strides in the fields of electronics, AI, and machine learning. Given his promising trajectory, Yang is likely to receive further honors as his doctoral studies progress and his body of work grows.

Conclusion

Yang Dengtian is undoubtedly a strong contender for the Best Researcher Award due to his innovative approach to research, technical expertise, and significant contributions to the field of hardware-software co-design and optimization. His passion for learning, combined with his publications and project experience, highlights his potential to make substantial advancements in his area of study. However, expanding his collaborations and enhancing the practical impact of his research could further solidify his status as a leading researcher in the field.

Recommendation: Yang Dengtian is highly deserving of the Best Researcher Award, with his strengths outweighing areas for improvement. His future contributions are expected to have a lasting impact in the fields of object detection, hardware acceleration, and micro-architecture design.

Publications Top Noted

  • Title: Nano-carriers of combination tumor physical stimuli-responsive therapies
    Authors: W Jin, C Dong, D Yang, R Zhang, T Jiang, D Wu
    Journal: Current Drug Delivery
    Volume & Issue: 17 (7), 577-587
    Year: 2020
    Cited by: 7
  • Title: Object Detection Post Processing Accelerator Based on Co-Design of Hardware and Software
    Authors: D Yang, L Chen, X Hao, Y Zhang
    Journal: Information
    Volume & Issue: 16 (1), 63
    Year: 2025
    Cited by: Not yet cited (as of 2025)

 

Naeem Ullah | Computer Science | Best Researcher Award

Mr. Naeem Ullah | Computer Science | Best Researcher Award

PhD Student at Software Engineering Research Group (SERG-UOM) University of Malakand, Pakistan

Mr. Naeem Ullah is a dedicated academic and researcher currently pursuing a PhD in Computer Science, with a focus on cybersecurity challenges in vehicle-to-vehicle communication from a software engineering perspective. Holding a strong academic record with a CGPA of 3.75/4.00, he has presented his research at international forums, such as the 2nd Annual International Workshop on Software Engineering, where he shared his Multivocal Literature Review (MLR) protocol on cybersecurity culture. Mr. Ullah has also received recognition for his teaching excellence, earning the Best Teacher Award in 2018. His work experience includes roles as a lecturer at the University Model College KPK, part-time tutor at Allama Iqbal Open University, and facilitator for continuous professional development programs for teachers. His research, currently under review, addresses crucial cybersecurity issues in vehicle-to-vehicle communications. Mr. Ullah’s commitment to furthering his knowledge is evident through multiple certifications in data science, networking, and cybersecurity.

Professional Profile 

Education

Mr. Naeem Ullah has a strong educational background in Computer Science. He is currently pursuing a PhD in Computer Science with a focus on cybersecurity challenges in vehicle-to-vehicle communication, maintaining an impressive CGPA of 3.75/4.00. His research aims to develop a mitigation model for cybersecurity issues in connected vehicle systems, reflecting his deep engagement with current technological challenges. Mr. Ullah completed his Master’s degree in Computer Science in 2019, achieving a CGPA of 3.7/4.00, with his thesis titled Software Development Process Improvement Model for Small Pakistani Software Development Companies. He also holds a Bachelor’s degree in Computer Science from 2014, with a CGPA of 3.62/4.00. His final year project, Auction Management System, showcased his ability to apply practical solutions to real-world problems. Mr. Ullah’s academic journey is marked by consistent excellence and a strong commitment to advancing his expertise in the field of computer science.

Professional Experience

Mr. Naeem Ullah has accumulated diverse professional experience in both academic and research roles. He has served as a Lecturer in Computer Science at the University Model College KPK, Peshawar, Pakistan, where he taught and mentored students in various computer science subjects. In addition, he has worked as a part-time tutor for Allama Iqbal Open University, Islamabad, since 2022, focusing on Information and Communication Technologies (ICT). Mr. Ullah has also contributed to teacher development programs, serving as a facilitator for the Continuous Professional Development (CPD) of Primary School Teachers (PSTs) through the Provincial Institute of Teacher Education (PITE) in KPK. His role as a part-time researcher at the Department of Computer Science and IT at the University of Malakand further underscores his involvement in academic research. Earlier in his career, he worked as a Secondary School Teacher at the Elementary and Secondary Education Department, KPK. His experiences reflect a blend of teaching, research, and educational development.

Research Interest

Mr. Naeem Ullah’s research interests primarily focus on cybersecurity, particularly in the context of emerging technologies such as vehicle-to-vehicle (V2V) communication. His PhD research investigates cybersecurity challenges and proposes mitigation models for securing V2V communication systems from a software engineering perspective. This area of research is highly relevant due to the increasing integration of connected vehicles and the need for secure communication protocols to protect sensitive data. Additionally, Mr. Ullah is interested in software engineering, with a particular emphasis on improving software development processes for small software companies in Pakistan, as demonstrated in his Master’s thesis. He has also contributed to the field of cybersecurity culture through his work on a Multivocal Literature Review (MLR) protocol, which identifies cybersecurity challenges and best practices in V2V communication. His research endeavors aim to address critical issues in both cybersecurity and software engineering, contributing to the development of safer, more efficient technologies.

Award and Honor

Mr. Naeem Ullah has received notable recognition for his academic and professional achievements. In 2022, he presented his Multivocal Literature Review (MLR) Protocol at the 2nd Annual International Workshop on Software Engineering (WSE-2022), organized by the Software Engineering Research Group at the University of Malakand. This presentation, focused on Cybersecurity Culture, showcased his expertise and contribution to the field of cybersecurity. Additionally, Mr. Ullah earned the prestigious Best Teacher Award from the Director of Elementary and Secondary Education, KPK, Pakistan, in 2018. This recognition highlights his excellence in teaching and his commitment to fostering the growth and development of his students. These awards and honors reflect Mr. Ullah’s dedication to advancing both his academic research and educational practices, demonstrating his commitment to the fields of computer science and cybersecurity while contributing positively to the educational community.

Conclusion

Naeem Ullah is a promising candidate for the Best Researcher Award, with a solid academic record, a focused and impactful research topic, and a commitment to both education and professional development. His strengths lie in his dedication to advancing cybersecurity research in emerging technologies like vehicle-to-vehicle communication and his capacity for leadership in educational initiatives. To further enhance his candidacy, Naeem could focus on increasing his research output, expanding his research scope, and engaging more in international collaborations to elevate the impact of his work.

Publications Top Noted

  • Title: Solutions to Cybersecurity Challenges in Secure Vehicle-to-Vehicle Communications: A Multivocal Literature Review
    Authors: Naeem Ullah, S.U. Khan, M. Niazi, A.A. Khan, J.A. Nasir
    Journal: Information and Software Technology
    Year: 2025
    Volume: 179
    Article ID: 107639
    Citations: 0
  • Title: Challenges and Their Practices in Adoption of Hybrid Cloud Computing: An Analytical Hierarchy Approach
    Authors: S.U. Khan, H.U. Khan, Naeem Ullah, R.A. Khan
    Journal: Security and Communication Networks
    Year: 2021
    Article ID: 1024139
    Citations: 2
  • Title: Internet of Things for Healthcare Using Effects of Mobile Computing: A Systematic Literature Review
    Authors: S. Nazir, Y. Ali, Naeem Ullah, I. García-Magariño
    Journal: Wireless Communications and Mobile Computing
    Year: 2019
    Article ID: 5931315
    Citations: 138
  • Title: Practices for Clients in the Adoption of Hybrid Cloud
    Authors: S.U. Khan, Naeem Ullah
    Journal: Proceedings of the Pakistan Academy of Sciences: Part A
    Year: 2017
    Volume: 54(1A)
    Pages: 13–32
    Citations: 3